Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 18 trang 102 Sách Bài Tập (SBT) Toán 9 Tập 2

Chứng minh rằng tích MA.MB không đổi.

Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M vẽ một cát tuyến bất kì cắt đường tròn ở A và B. Chứng minh rằng tích MA.MB không đổi.

Giải

Trường hợp M ở bên trong đường tròn (O)

Kẻ cát tuyến AB bất kỳ và kẻ đường thẳng MO cắt đường tròn tại C và D.

Xét hai ∆MAC và ∆MBD:

\(\widehat {AMC} = \widehat {BMD}\) (đối đỉnh)

\(\widehat A = \widehat D\) (hai góc nội tiếp cùng chắn cung \(\overparen{BC}\)

Suy ra: ∆MAC đồng dạng ∆MDB (g.g)

\( \Rightarrow {{MB} \over {MC}} = {{MD} \over {MA}}\)

\( \Rightarrow MA.MB = MC.MD\)            (1)

Vì M, O cố định suy ra điểm C và D cố định nên độ dài của các đoạn MC và MD không đổi \( \Rightarrow \) tích MC.MD không đổi              (2)

Từ (1) và (2) suy ra tích MA. MB không đổi khi cát tuyến AB thay đổi.

 

Trường hợp điểm M ở ngoài đường tròn (O)

Kẻ cát tuyến MAB bất kỳ của (O) và đường thẳng MO cắt đường tròn (O) tại C và D

Xét ∆MAD và ∆MCB:

\(\widehat M\) chung

\(\widehat B = \widehat D\) (hai góc nội tiếp cùng chắn cung \(\overparen{AC}\))

Suy ra: ∆MAD đồng dạng ∆MCB (g.g)

\( \Rightarrow {{MC} \over {MA}} = {{MB} \over {MD}} \Rightarrow MA.MB = MC.MD\)               (3)

Vì M và O cố định suy ra điểm C, D cố định nên độ dài của các đoạn MC và MD không đổi \( \Rightarrow \) tích MC. MD không đổi   (4)

Từ (3) và (4) suy ra tích MA. MB không đổi khi cát tuyến MAB thay đổi.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3: Góc nội tiếp