Câu 1.8 trang 8 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh rằng Chứng minh rằng số \(\pi \) là số dương T nhỏ nhất thỏa mãn điều kiện: Với mọi \(x \in {D_1}\backslash \left\{ {{\pi \over 2} + k\pi |k \in Z} \right\}\) ta có \(x + T \in {D_1},x - T \in {D_1}\) và \(\tan \left( {x + \pi } \right) = \tan x\) (tức là hàm số \(y= \tan x\) là hàm số tuần hoàn với chu kì \(\pi \)) Giải T là số thỏa mãn \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \(\tan (x + T) = \tan x\). Với \(x = 0\) ta được \(\tan T = \tan 0 = 0\) , suy ra \(T = k\pi ,k\) là số nguyên . Rõ ràng với mọi số nguyên \(k\) , số \(T = k\pi \) thỏa mãn \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \(\tan (x + T) = \tan x\). Trong các số \(k\pi ,k \in Z\) số dương nhỏ nhất là \(\pi \) . Vậy hàm số \(y=\tan x\) tuần hoàn với chu kì \(\pi \). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1: Các hàm số lượng giác
|
Chứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số: