Câu 1.10 trang 8 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số: Chứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số: a) \(y = {1 \over {\sin x}}\) b) \(y = {1 \over {\cos x}}\) c)\(y = {\tan ^2}x\) Giải a) \(y = {1 \over {\sin x}}\) là hàm số xác định trên \({D_2}\). Cần tìm số T thỏa mãn: \(\forall x \in {D_2},x + T \in {D_2},x - T \in {D_2},{1 \over {\sin (x + T)}} = {1 \over {\sin x}}\) . Xét \(x = {\pi \over 2} \in {D_2}\), ta được \(\sin \left( {{\pi \over 2} + T} \right) = 1,\) từ đó \({\pi \over 2} + T = {\pi \over 2} + k2\pi ,\) tức \(T = k2\pi ,\) k là số nguyên. Rõ ràng với mọi số nguyên k, số \(T = k2\pi \) thỏa mãn: \(\forall x \in {D_2},x + T \in {D_2},x - T \in {D_2}\) và \({1 \over {\sin \left( {x + T} \right)}} = {1 \over {\sin x}}\). Vậy hàm số \(y = {1 \over {\sin x}}\) là một hàm tuần hoàn với chu kì \(2\pi \). Đó là một hàm số lẻ. b) \(y = {1 \over {\cos x}}\) là hàm số xác định trên \({D_1}\). Cần tìm số T thỏa mãn: \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\), \({1 \over {\cos \left( {x + T} \right)}} = {1 \over {\cos x}}\). Xét \(x = 0 \in {D_1},\) ta được \(\cos T = 1\), từ đó \(T = k2\pi ,\) k là số nguyên. Rõ ràng với mọi số nguyên k, số \(T = k2\pi \) thỏa mãn các điều kiện đề ra. Vậy hàm số \(y = {1 \over {\cos x}}\) là một hàm số tuần hoàn với chu kì \(2\pi \). Đó là một hàm số chẵn. c) \(y = {\tan ^2}x\), cần tìm số T thỏa mãn: \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\), \({\tan ^2}\left( {x + T} \right) = {\tan ^2}x.\) Xét \(x = 0 \in {D_1},\) ta được \({\tan ^2}T = 0,\) từ đó \(\tan T = 0,\) suy ra \(\tan T = k\pi \), k là số nguyên. Rõ ràng với mọi số nguyên k, số \(T = k\pi \) thỏa mãn: \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \({\tan ^2}\left( {x + T} \right) = {\tan ^2}\left( {x + k\pi } \right) = {\tan ^2}x.\) Vậy hàm số \({\tan ^2}x\) là một hàm số tuần hoàn với chu kì \(\pi \). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1: Các hàm số lượng giác
|