Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.10 trang 8 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số:

Chứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số:

a) \(y = {1 \over {\sin x}}\)                                         

b) \(y = {1 \over {\cos x}}\)                             

c)\(y = {\tan ^2}x\)

Giải

a) \(y = {1 \over {\sin x}}\) là hàm số xác định trên \({D_2}\). Cần tìm số T thỏa mãn:

\(\forall x \in {D_2},x + T \in {D_2},x - T \in {D_2},{1 \over {\sin (x + T)}} = {1 \over {\sin x}}\) . Xét \(x = {\pi  \over 2} \in {D_2}\), ta được \(\sin \left( {{\pi  \over 2} + T} \right) = 1,\) từ đó \({\pi  \over 2} + T = {\pi  \over 2} + k2\pi ,\) tức \(T = k2\pi ,\) k là số nguyên.

Rõ ràng với mọi số nguyên k, số \(T = k2\pi \) thỏa mãn: \(\forall x \in {D_2},x + T \in {D_2},x - T \in {D_2}\) và \({1 \over {\sin \left( {x + T} \right)}} = {1 \over {\sin x}}\). Vậy hàm số  \(y = {1 \over {\sin x}}\) là một hàm tuần hoàn với chu kì \(2\pi \). Đó là một hàm số lẻ.

b)  \(y = {1 \over {\cos x}}\) là hàm số xác định trên \({D_1}\). Cần tìm số T thỏa mãn:

 \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\), \({1 \over {\cos \left( {x + T} \right)}} = {1 \over {\cos x}}\). Xét \(x = 0 \in {D_1},\) ta được \(\cos T = 1\), từ đó \(T = k2\pi ,\) k là số nguyên. Rõ ràng với mọi số nguyên k, số  \(T = k2\pi \) thỏa mãn các điều kiện đề ra. Vậy hàm số \(y = {1 \over {\cos x}}\) là một hàm số tuần hoàn với chu kì \(2\pi \). Đó là một hàm số chẵn.

c)  \(y = {\tan ^2}x\), cần tìm số T thỏa mãn:

\(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\), \({\tan ^2}\left( {x + T} \right) = {\tan ^2}x.\) Xét \(x = 0 \in {D_1},\) ta được \({\tan ^2}T = 0,\) từ đó \(\tan T = 0,\) suy ra \(\tan T = k\pi \), k là số nguyên. Rõ ràng với mọi số nguyên k, số \(T = k\pi \) thỏa mãn:

 \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \({\tan ^2}\left( {x + T} \right) = {\tan ^2}\left( {x + k\pi } \right) = {\tan ^2}x.\) Vậy hàm số \({\tan ^2}x\) là một hàm số tuần hoàn với chu kì \(\pi \).

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Xem thêm tại đây: Bài 1: Các hàm số lượng giác