Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 19 trang 53 Sách bài tập Hình học 11 nâng cao.

Cho tứ diện đều ABCD có cạnh bằng a. Gọi I là trung điểm của AD, J là điểm đối xứng với D qua C, K là điểm đối xứng với D qua B.

19. Trang 53 Sách bài tập Hình học 11 nâng cao.

Cho tứ diện đều ABCD có cạnh bằng a. Gọi I là trung điểm của AD, J là điểm đối xứng với D qua C, K là điểm đối xứng với D qua B.

a) Xác định thiết diện của hình tứ diện khi cắt bởi mp(IJK).

b) Tính diện tích thiết diện được xác định bởi câu a.

Giải

a) Nối I và J cắt AC tại N. Nối I và K cắt AB tại M. Tam giác IMN là thiết diện cần tìm.

b) Dễ thấy M là trọng tâm tam giác ADK, N là trọng tâm tam giác ADJ. Từ đó ta có:

\(AN = {2 \over 3}AC;\;AM = {2 \over 3}AB\)

Suy ra: \(AN = AM = {2 \over 3}a\) và MN//CB. Do đó \(MN = {2 \over 3}CB\)

hay \(MN = {2 \over 3}a.\)

Xét tam giác AIM. Ta có:

\(\eqalign{
& I{M^2} = A{I^2} + A{M^2} - 2AI.AM.\cos {60^o} \cr
& \,\,\,\,\,\,\,\,\,\,\, = {{{a^2}} \over 4} + {4 \over 9}{a^2} - 2.{a \over 2}.{{2a} \over 3}.{1 \over 2} = {{13} \over {36}}{a^2} \cr
& \Rightarrow IM = {{a\sqrt {13} } \over 6} \cr} \)

Tương tự, ta có \(IN = {{a\sqrt {13} } \over 6}\)

Vậy theo công thức Hê-rông, ta có:

\({S_{IMN}} = \sqrt {\left( {{{a\sqrt {13} } \over 6} + {2 \over 6}a} \right).{2 \over 6}a.{2 \over 6}a.\left( {{{a\sqrt {13} } \over 6} - {2 \over 6}a} \right)} \)

            \(= {{{a^2}} \over 6}.\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.