🎁 ƯU ĐÃI -50% + TẶNG SÁCH SUNBOOK & 17 ĐỀ 9+
Giờ
Phút
Giây
Câu 19 trang 53 Sách bài tập Hình học 11 nâng cao.Cho tứ diện đều ABCD có cạnh bằng a. Gọi I là trung điểm của AD, J là điểm đối xứng với D qua C, K là điểm đối xứng với D qua B. 19. Trang 53 Sách bài tập Hình học 11 nâng cao. Cho tứ diện đều ABCD có cạnh bằng a. Gọi I là trung điểm của AD, J là điểm đối xứng với D qua C, K là điểm đối xứng với D qua B. a) Xác định thiết diện của hình tứ diện khi cắt bởi mp(IJK). b) Tính diện tích thiết diện được xác định bởi câu a. Giải a) Nối I và J cắt AC tại N. Nối I và K cắt AB tại M. Tam giác IMN là thiết diện cần tìm. b) Dễ thấy M là trọng tâm tam giác ADK, N là trọng tâm tam giác ADJ. Từ đó ta có: \(AN = {2 \over 3}AC;\;AM = {2 \over 3}AB\) Quảng cáo Suy ra: \(AN = AM = {2 \over 3}a\) và MN//CB. Do đó \(MN = {2 \over 3}CB\) hay \(MN = {2 \over 3}a.\) Xét tam giác AIM. Ta có: \(\eqalign{ Tương tự, ta có \(IN = {{a\sqrt {13} } \over 6}\) Vậy theo công thức Hê-rông, ta có: \({S_{IMN}} = \sqrt {\left( {{{a\sqrt {13} } \over 6} + {2 \over 6}a} \right).{2 \over 6}a.{2 \over 6}a.\left( {{{a\sqrt {13} } \over 6} - {2 \over 6}a} \right)} \) \(= {{{a^2}} \over 6}.\) sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1: Đại cương về đường thẳng và mặt phẳng
|
Chứng minh rằng các đường thẳng đi qua mỗi đỉnh và tâm đường tròn nội tiếp của mặt đối diện đồng quy tại một điểm.
Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.