Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 21 trang 53 Sách bài tập Hình học 11 nâng cao.

Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.

21. Trang 53 Sách bài tập Hình học 11 nâng cao.

Cho tứ diện ABCD. Hai điểm M, N lần lượt nằm trên hai cạnh AB và AC sao cho \({{AM} \over {AB}} \ne {{AN} \over {AC}}.\) Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.

a) Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.

b) Tìm tập hợp giao điểm I của ME và NE.

c) TÌm tập hợp giao điểm J của MF và NE.

Giải

a) Gọi K là giao điểm của MN và BC thì K cố định và K là một điểm chung của mp(P) với mp(BCD). Mặt khác, \(mp\left( P \right) \cap mp\left( {BCD} \right) = EF\). Vậy K phải thuộc EF, nên EF luôn qua điểm cố định K.

b) Ta có I là giao điểm của ME và NF. Vậy \(I \in ME,\,ME \subset \left( {MCD} \right) \Rightarrow I \in \left( {MCD} \right)\) và \(I \in NF,\,NF \subset \left( {NBD} \right) \Rightarrow I \in \left( {NBD} \right).\)

Từ đó, suy ra I thuộc giao tuyến OD của (MCD) và (NBD).

Khi E chạy đến C thì F chạy đến B và I chạy đến O.

Khi E chạy đến D thì F chạy đến D và I cũng chạy đến D.

Vậy tập hợp các điểm I là đoạn thẳng OD.

c) J là giao điểm của MF và NE. Từ đó dễ thấy J thuộc hai mặt phẳng (ABD) và (ACD). Vậy J phải thuộc giao tuyến AD của hai mặt phẳng (ABD) và (ACD).

Lí luận tương tự như câu a) ta thấy tập hợp các điểm J là đường thẳng AD trừ các điểm trong đoạn AD.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.