Câu 20 trang 159 Sách bài tập (SBT) Toán 9 Tập 1a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN. a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN. b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N, kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD. Giải: a) Ta có: CM ⊥CD DN⊥CD Suy ra: CM // DN Kẻ OI ⊥CD Suy ra: OI // CM // DN Ta có: IC = ID (đường kính dây cung) Suy ra: OM = ON (1) Mà: AM + OM = ON + BM( = R) (2) Từ (1) và (2) suy ra: AM = BN. b) Ta có: MC // ND (gt) Suy ra tứ giác MCDN là hình thang Lại có: OM + AM = ON + BN (= R) Mà AM = BN (gt) Suy ra: OM = ON Kẻ OI ⊥ CD (3) Suy ra: IC = ID (đường kính dây cung) Khi đó OI là đường trung bình của hình thang MCDN Suy ra: OI // MC // ND (4) Từ (3) và (4) suy ra: MC ⊥ CD, ND ⊥ CD. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Đường kính và dây của đường tròn
|
Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK.
Cho đường tròn (O; R) và điểm M nằm bên trong đường tròn. a) Hãy nêu cách dựng dây AB nhận M làm trung điểm.
Cho đường tròn (O), điểm A nằm bên trong đường tròn, điểm B nằm ngoài đường tròn sao cho trung điểm I của AB nằm bên trong đường tròn. Vẽ dây CD vuông góc với OI tại I. hãy cho biết ACBD là hình gì? Vì sao?
Độ dài cạnh của tam giác đều nội tiếp đường tròn (O; R) bằng: