Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.22 trang 73 sách bài tập Giải tích 12 Nâng cao

Với giá trị nào của a thì phương trình

Với giá trị nào của a thì phương trình

                                \({2^{ax^2 - 4x - 2a}} = {1 \over {{{\left( {\sqrt 2 } \right)}^{ - 4}}}}\)

Có nghiệm duy nhất ?

Giải

\({1 \over {{{\left( {\sqrt 2 } \right)}^{ - 4}}}} = {\left( {\sqrt 2 } \right)^4} = {2^2}\) .

Để phương trình đã cho có nghiệm duy nhất, điều kiện cần và đủ là phương trình

                                \(a{x^2} - 4x - 2a = 2\)   (1)

Có nghiệm duy nhất

+) Khi a = 0 thì phương trình có nghiệm duy nhất \(x = -{1 \over 2}\)

+) Khi \(a \ne 0\) , (1) trở thành phương trình bậc hai \(a{x^2} - 4x - 2(a + 1) = 0\). Nó có nghiệm duy nhất khi và chỉ khi

                                \(\Delta ' = 4 - 2(a + 1)a = 0\)

Hay \({a^2} + a + 2 = 0\) . Điều này không xảy ra.

Vậy phương trình đã cho có nghiệm duy nhất khi a = 0

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.