Câu 2.32 trang 65 sách bài tập Đại số và Giải tích 11 Nâng caoTìm hệ số của số hạng Tìm hệ số của số hạng chứa \({x^8}\) trong khai triển nhị thức Niu-tơn của \({\left( {{1 \over {{x^3}}} + \sqrt {{x^5}} } \right)^n}\) biết rằng \(C_{n + 4}^{n + 1} - C_{n + 3}^n = 7\left( {n + 3} \right)\) Giải Theo hằng đẳng thức Pa-xcan ta có \(C_{n + 4}^{n + 1} - C_{n + 3}^n = C_{n + 3}^{n + 1} = C_{n + 3}^2 = {{(n + 3)(n + 2)} \over 2}\) suy ra \((n + 2)(n + 3) = 14(n + 3)\). Vậy \(n = 12\). Số hạng thứ \(k\) trong khai triển của biểu thức đã cho là \(C_{12}^k{x^{ - 3(12 - k)}}{x^{{{5k} \over 2}}}\). Ta có phương trình \( - 3(12 - k) + 5{k \over 2} = 8\). Suy ra \(11k = 88\) vậy \(k = 8\). Vậy hệ số của số hạng chứa \({x^8}\) trong khai triển là: \(C_{12}^8 = 495\). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3: Nhị thức Niu - tơn
|
Chọn ngẫu nhiên 5 quân bài trong cỗ bài tú lơ khơ ta được một xấp bài. Tính xác suất để trong xấp bài này chứa hai bộ đôi (tức là có hai con cùng thuộc một bộ, hai con thuộc bộ thứ 2, con thứ 5 thuộc bộ khác)
Tính xác suất để khi gieo con súc sắc 6 lần độc lập, không lần nào xuất hiện mặt có số chấm là một số chẵn.