Câu 2.33 trang 65 sách bài tập Đại số và Giải tích 11 Nâng caoCho đa giác đều có 2n cạnh Cho đa giác đều có 2n cạnh \({A_1}{A_2}...{A_{2n}}\) nội tiếp trong một đường tròn. Biết rằng tam giác có đỉnh lấy trong 2n điểm \({A_1}...{A_{2n}}\) nhiều gấp 20 lần số hình chữ nhật có đỉnh lấy trong 2n điểm \({A_1}{A_2}...{A_{2n}}\). Tìm n. Giải Có \(C_{2n}^3\) tam giác. Mỗi hình chữ nhật được xác định bởi việc chọn 2 trong số n đỉnh ở nửa đường tròn. Vậy có \(C_n^2\) hình chữ nhật. Ta có phương trình \(20C_n^2 = C_{2n}^3\) \(\Rightarrow n=8\). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3: Nhị thức Niu - tơn
|
Chọn ngẫu nhiên 5 quân bài trong cỗ bài tú lơ khơ ta được một xấp bài. Tính xác suất để trong xấp bài này chứa hai bộ đôi (tức là có hai con cùng thuộc một bộ, hai con thuộc bộ thứ 2, con thứ 5 thuộc bộ khác)
Tính xác suất để khi gieo con súc sắc 6 lần độc lập, không lần nào xuất hiện mặt có số chấm là một số chẵn.
Trên một cái vòng hình trong dùng để quay xổ số, có gắn 38 con số từ 1 đến 36 và hai số 0; 00. Trong 36 số từ 1 đến 36 có 18 số chẵn màu đỏ, 18 số lẻ màu đen; hai số còn lại 0 và 00 không đỏ cũng không đen. Xác suất để bánh xe sau khi quay, dừng ở mỗi số đều bằng nhau.