Câu 24 trang 159 Sách bài tập (SBT) Toán 8 tập 1Chứng minh rằng tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích của hình vuông dựng trên cạnh huyền(không sử dụng định lý Py-ta-go) Cho một tam giác vuông cân. Chứng minh rằng tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích của hình vuông dựng trên cạnh huyền(không sử dụng định lý Py-ta-go) Giải: Gọi S là diện tích của tam giác ABC Hình vuông có cạnh AB chia thành hai tam giác vuông cân bằng ∆ ABC nên diện tích hình vuông cạnh AB bằng 2S Hình vuông có cạnh AC chia thành hai tam giác vuông cân bằng ∆ ABC nên có diện tích bằng 2S Hình vuông BC chia thành 4 hình tam giác vuông cân bằng ∆ ABC nên có diện tích bằng 4S Vì 4S = 2S + 2S nên diện tích hình vuông dựng trên cạnh huyền bằng tổng diện tích hai hình vuông dựng trên hai cạnh góc vuông. Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Diện tích hình chữ nhật
|
Để có thể lát kín nền đó cần bao nhiêu viên gạch có hình vuông, với cạnh là 33,33cm ?
Hai đường chéo của hình chữ nhật chia hình chữ nhật thành bốn tam giác. Diện tích của các tam giác đó có bằng nhau không ? Vì sao ?