Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 27. Trang 107 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Tính sinB, sinC trong mỗi trường hợp sau (làm tròn đến chữ số thập phân thứ tư), biết rằng:

Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Tính sinB, sinC trong mỗi trường hợp sau (làm tròn đến chữ số thập phân thứ tư), biết rằng:

a)   AB = 13;    BH = 5.

b)   BH = 3;      CH = 4.

Gợi ý làm bài:

a) Xét tam giác vuông ABH, ta có: \(\cos \widehat B = {{BH} \over {AB}} = {5 \over {13}}\)

Tam giác ABC vuông tại A nên: \(\widehat B + \widehat C = 90^\circ \)

Suy ra: \(\sin \widehat C = c{\rm{os}}\widehat B = {5 \over {13}} = 0,3864.\)

Áp dụng định lí Pi-ta-go, ta có:

\(A{B^2} = A{H^2} + B{H^2} \Rightarrow A{H^2} = A{B^2} - B{H^2} = {13^2} - {5^2} = 144\)

Suy ra: AH = 12

Ta có: \(\sin B = {{AH} \over {AB}} = {{12} \over {13}} \approx 0,9231\)

b) Ta có:

\(BC = BH + HC = 3 + 4 = 7\)

Theo hệ thức liên hệ giữa góc vuông và hình chiếu, ta có:

\(A{B^2} = BH.BC \Rightarrow AB = \sqrt {BH.BC}  = \sqrt {3.7}  = \sqrt {21} \) 

\(\eqalign{
& A{C^2} = CH.BC \cr
& \Rightarrow AC = \sqrt {CH.BC} = \sqrt {4.7} = \sqrt {28} = 2\sqrt 7 \cr} \)

Suy ra: \(\sin \widehat B = {{AC} \over {BC}} = {{2\sqrt 7 } \over 7} \approx 0,7559\)

\(\sin \widehat C = {{AB} \over {BC}} = {{\sqrt {21} } \over 7} \approx 0,6547\) 

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.