Câu 28 trang 90 Sách bài tập (SBT) Toán 8 tập 2Chứng minh rằng ba tam giác ADE, ABE và BEC đông dạng với nhau từng đôi một. Hình thang ABCD (AB // CD) có CD = 2AB. Gọi E là trung điểm của DC. Chứng minh rằng ba tam giác ADE, ABE và BEC đồng dạng với nhau từng đôi một. (Chú ý viết các đỉnh của hai tam giác đồng dạng theo thứ tự tương ứng với nhau). Giải: Vì CD = 2AB (gt) nên AB \( = {1 \over 2}CD\) Vì E là trung điểm của CD nên DE = EC \( = {1 \over 2}CD\) Suy ra: AB = DE = EC Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau: Xét ∆ AEB và ∆ CBE, ta có: \(\widehat {ABE} = \widehat {BEC}\) (so le trong) \(\widehat {AEB} = \widehat {EBC}\) (so le trong) BE canh chung ⇒ ∆ AEB = ∆ CBE (g.c.g) (1) Hình thang ABED có đáy AB = DE nên hai cạnh bên AD và BE song song với nhau. Xét ∆ AEB và ∆ EAD, ta có: \(\widehat {BAE} = \widehat {AED}\) (so le trong) \(\widehat {AEB} = \widehat {EAD}\) (so le trong) AE cạnh chung ⇒ ∆ AEB = ∆ EAD (g.c.g) (2) Từ (1) và (2) suy ra: ∆ AEB = ∆ EAD = ∆ CBE. Do đó ba tam giác ADE, ABE và BEC đồng dạng với nhau từng đôi một. Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Khái niệm hai tam giác đồng dạng
|
Hai tam giác mà các cạnh có độ dài như sau có đồng dạng không ?
Hỏi rằng hai tam giác vuông ABC và A’B’C’ có đồng dạng với nhau không ? Vì sao ?
Chứng minh rằng tam giác PQR đồng dạng với tam giác ABC.