Giải các hệ phương trình sau theo hai cách (cách thứ nhất: đưa hệ phương trình về dạng
\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x + b'y = c'} \cr} } \right.\);
cách thứ hai: đặt ẩn phụ, chẳng hạn 3x – 2 = s, 3y + 2 = t):
\(a)\left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right.\)
\(b)\left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr} } \right.\)
Giải
a) Cách 1:
\(\eqalign{
& \left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{6x - 4 - 4 = 15y + 10} \cr
{12x - 8 + 21y + 14 = - 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr
{12x + 21y = - 8} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{12x - 30y = 36} \cr
{12x + 21y = - 8} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr
{51y = - 44} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x - 5y = 6} \cr
{y = - {{44} \over {51}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{2x = 6 - {{220} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = {{86} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = {{43} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr} } \right. \cr} \)
Cách 2: Đặt 3x – 2 = s, 3y + 2 = t ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{2s - 4 = 5t} \cr
{4s + 7t = - 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4s - 10t = 8} \cr
{4s + 7t = - 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{17t = - 10} \cr
{2s - 5t = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{2s - 5t = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{2s - 5.\left( { - {{10} \over {17}}} \right) = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{2s = 4 - {{50} \over {17}}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = - {{10} \over {17}}} \cr
{s = {9 \over {17}}} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{3x - 2 = {9 \over {17}}} \cr
{3y + 2 = - {{10} \over {17}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{3x = 2 + {9 \over {17}}} \cr
{3y = - {{10} \over {17}} - 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{3x = {{43} \over {17}}} \cr
{3y = - {{44} \over {17}}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {{43} \over {51}}} \cr
{y = - {{44} \over {51}}} \cr} } \right. \cr} \)
Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{{43} \over {51}}; - {{44} \over {51}}} \right)\)
b) Cách 1:
\(\eqalign{
& \left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{3x + 3y + 5x - 5y = 12} \cr
{ - 5x - 5y + 2x - 2y = 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{8x - 2y = 12} \cr
{ - 3x - 7y = 11} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4x - y = 6} \cr
{3x + 7y = - 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{12x - 3y = 18} \cr
{12x + 28y = - 44} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{31y = - 62} \cr
{4x - y = 6} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr
{4x + 2 = 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr
{x = 1} \cr} } \right. \cr} \)
Cách 2: Đặt x + y = s; x – y = t ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{3s + 5t = 12} \cr
{ - 5s + 2t = 11} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{15s + 25t = 60} \cr
{ - 15s + 6t = 33} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{31t = 93} \cr
{ - 5s + 2t = 11} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr
{ - 5s + 2.3 = 11} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr
{s = - 1} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{x + y = - 1} \cr
{x - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = 2} \cr
{x - y = 3} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{1 - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{y = - 2} \cr} } \right. \cr} \)
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (1; -2).
Sachbaitap.com