Câu 31 trang 10 Sách bài tập Hình Học 11 nâng cao.Chứng minh rằng hợp thành của một số phép quay với các tâm quay trùng nhau là một phép quay. 31. Trang 10 Sách bài tập Hình Học 11 nâng cao. Chứng minh rằng hợp thành của một số phép quay với các tâm quay trùng nhau là một phép quay. Giải Giả sử Q và Q’ là hai phép quay có tâm O với góc quay lần lượt là \(\varphi \) và \(\varphi ',\) còn F là hợp thành của Q và Q’. Với mọi điểm M khác O, giả sử Q biến M thành \({M_1}\) và Q’ biến \({M_1}\) thành \({M_2}\). Khi đó ta có: \(\eqalign{ Suy ra \(OM = O{M_2}\) Và \(\left( {OM,O{M_2}} \right) = \left( {OM,O{M_1}} \right) + \left( {O{M_1},O{M_2}} \right) \) \(= \varphi + \varphi '\) Vậy hợp thành F là phép quay tâm O góc quay bằng \(\varphi + \varphi '\) Từ đó suy ra: Hợp thành của một số hữu hạn có tâm trùng nhau là một phép quay với tâm đó và có góc quay bằng tổng các góc quay của các phép quay đã cho. sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4: Phép quay và phép đối xứng tâm
|
Hợp thành của một số lẻ các phép đối xứng trục có các trục đối xứng đồng quy là một phép đối xứng trục.
Cho đường tròn (O) và một điểm I không nằm trên đường tròn. Với mỗi điểm A thay đổi trên đường tròn, ta xét hình vuông ABCD có tâm I. Tìm quỹ tích các điểm B, C, D.
Cho đường thẳng a và một điểm G không nằm trên a. Với mỗi điểm nằm trên a ta dựng tam giác đều ABC có tâm G. Tìm quỹ tích hai điểm B và C khi A chạy trên a.