Câu 3.10 trang 87 sách bài tập Đại số và Giải tích 11 Nâng caoTrong mặt phẳng tọa độ, cho đồ thị Trong mặt phẳng tọa độ, cho đồ thị (C) của hàm số \(y = {{2x - 1} \over {2{x^2} + 1}}\) Với mỗi số nguyên dương n, gọi \({A_n}\) là giao điểm của đồ thị (C) và đường thẳng \(x = n\) Xét dãy số \(\left( {{u_n}} \right)\) với \({u_n}\) là tung độ của điểm \({A_n}\). Hãy tìm công thức xác định số hạng tổng quát của dãy số đó. Giải Vì \({A_n}\) nằm trên đường thẳng \(x = n\) nên hoành độ của nó bằng n. Vì \({A_n}\) nằm trên đồ thị (C) nên tung độ của nó được xác định bởi công thức \({u_n} = {{2n - 1} \over {2{n^2} + 1}}\) sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 2. Dãy số
|
Trong mặt phẳng tọa độ, đồ thị (C) của hàm số