Câu 3.2 trang 161 Sách bài tập (SBT) Toán 8 tập 1Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T. Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T. Giải: Giả sử ∆ ABC đều có cạnh bằng a, kẻ đường cao AD, đặt AD = h không đổi. Ta có: \(\eqalign{ & {S_{ABC}} = {1 \over 2}ah \cr & {S_{MAB}} = {1 \over 2}MT.a \cr & {S_{MAC}} = {1 \over 2}MK.a \cr & {S_{MBC}} = {1 \over 2}MH.a \cr & {S_{ABC}} = {S_{MAB}} + {S_{MAC}} + {S_{MBC}} \cr & {1 \over 2}a.h = {1 \over 2}MT.a + {1 \over 2}MK.a + {1 \over 2}MH.a \cr & = {1 \over 2}a.\left( {MT + MK + MH} \right) \cr} \) \( \Rightarrow MT + MK + MH = h\) không đổi Vậy tổng MT + MK + MH không phụ thuộc vào điểm M.
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Diện tích tam giác
|
Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S’ là diện tích của tam giác DBC.
Tính x, biết đa giác ở hình 188 có diện tích là 3375 m2.