Câu 3.2 trang 9 Sách bài tập (SBT) Toán 8 tập 2Bằng cách đặt ẩn phụ theo hướng dẫn, giải các phương trình sau: Bằng cách đặt ẩn phụ theo hướng dẫn, giải các phương trình sau: a. \({{6\left( {16x + 3} \right)} \over 7} - 8 = {{3\left( {16x + 3} \right)} \over 7}+7\) b. \(\left( {\sqrt 2 + 2} \right)\left( {x\sqrt 2 - 1} \right) = 2x\sqrt 2 - \sqrt 2 \) c. \(0,05\left( {{{2x - 2} \over {2009}} + {{2x} \over {2010}} + {{2x + 2} \over {2011}}} \right) = 3,3 - \left( {{{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}}} \right)\) Giải: a. Đặt u \( = {{16x + 3} \over 7}\), ta có phương trình 6u – 8 = 3u + 7. Giải phương trình này: 6u – 8 = 3u + 7 ⇔ 6u – 3u = 7 + 8 ⇔ 3u = 15 ⇔ u = 5 Vậy \({{6\left( {16x + 3} \right)} \over 7} - 8 = {{3\left( {16x + 3} \right)} \over 7} + 7\) \(\eqalign{ & \Leftrightarrow {{16x + 3} \over 7} = 5 \Leftrightarrow 16x + 3 = 35 \cr & \Leftrightarrow 16x = 32 \Leftrightarrow x = 2 \cr} \) b. Nếu đặt u \( = x\sqrt 2 - 1\) thì \(x\sqrt 2 = u + 1\) nên phương trình có dạng \(\left( {\sqrt 2 + 2} \right)u = 2\left( {u + 1} \right) - \sqrt 2 \) (1) Ta giải phương trình (1): (1) \( \Leftrightarrow \sqrt 2 u + 2u = 2u + 2 - \sqrt 2 \) \(\eqalign{ & \Leftrightarrow \sqrt 2 u = 2 - \sqrt 2 \cr & \Leftrightarrow \sqrt 2 u = \sqrt 2 \left( {\sqrt 2 - 1} \right) \Leftrightarrow u = \sqrt 2 - 1 \cr} \) Vậy \(\eqalign{ & \left( {\sqrt 2 + 2} \right)\left( {x\sqrt 2 - 1} \right) = 2x\sqrt 2 - \sqrt 2 \cr & \Leftrightarrow x\sqrt 2 - 1 = \sqrt 2 - 1 \cr & \Leftrightarrow x\sqrt 2 = \sqrt 2 \cr & \Leftrightarrow x = 1 \cr} \) c. Nếu đặt u \( = {{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}}\) thì \({{2x - 2} \over {2009}} + {{2x} \over {2010}} + {{2x + 2} \over {2011}} = 2u\) nên phương trình đã cho có dạng \(0,05.2u = 3,3 - u\), hay \(0,1u = 3,3 - u\). Dễ thấy phương trình này có một nghiệm duy nhất u = 3. Do đó \(\eqalign{ & 0,05\left( {{{2x - 2} \over {2009}} + {{2x} \over {2010}} + {{2x + 2} \over {2011}}} \right) \cr & = 3,3-\left( {{{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}}} \right) \cr & \Leftrightarrow {{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}} = 3 \cr & \Leftrightarrow \left( {{{x - 1} \over {2009}} - 1} \right) + \left( {{x \over {2010}} - 1} \right) + \left( {{{x + 1} \over {2011}} - 1} \right) = 0 \cr & \Leftrightarrow {{x - 2010} \over {2009}} + {{x - 2010} \over {2010}} + {{x - 2010} \over {2011}} = 0 \cr & \Leftrightarrow \left( {x - 2010} \right)\left( {{1 \over {2009}} + {1 \over {2010}} + {1 \over {2011}}} \right) = 0 \cr & \Leftrightarrow x = 2010 \cr} \) Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Phương trình được đưa về dạng ax + b = 0
|
Dùng máy tính bỏ túi để tính giá trị gần đúng các nghiệm của mỗi phương trình sau, làm tròn đến chữ số thập phân thứ ba.