Câu 3.2 trang 9 Sách bài tập (SBT) Toán 8 tập 2Bằng cách đặt ẩn phụ theo hướng dẫn, giải các phương trình sau: Bằng cách đặt ẩn phụ theo hướng dẫn, giải các phương trình sau: a. \({{6\left( {16x + 3} \right)} \over 7} - 8 = {{3\left( {16x + 3} \right)} \over 7}+7\) b. \(\left( {\sqrt 2 + 2} \right)\left( {x\sqrt 2 - 1} \right) = 2x\sqrt 2 - \sqrt 2 \) c. \(0,05\left( {{{2x - 2} \over {2009}} + {{2x} \over {2010}} + {{2x + 2} \over {2011}}} \right) = 3,3 - \left( {{{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}}} \right)\) Giải: a. Đặt u \( = {{16x + 3} \over 7}\), ta có phương trình 6u – 8 = 3u + 7. Giải phương trình này: 6u – 8 = 3u + 7 ⇔ 6u – 3u = 7 + 8 ⇔ 3u = 15 ⇔ u = 5 Vậy \({{6\left( {16x + 3} \right)} \over 7} - 8 = {{3\left( {16x + 3} \right)} \over 7} + 7\) \(\eqalign{ & \Leftrightarrow {{16x + 3} \over 7} = 5 \Leftrightarrow 16x + 3 = 35 \cr & \Leftrightarrow 16x = 32 \Leftrightarrow x = 2 \cr} \) b. Nếu đặt u \( = x\sqrt 2 - 1\) thì \(x\sqrt 2 = u + 1\) nên phương trình có dạng \(\left( {\sqrt 2 + 2} \right)u = 2\left( {u + 1} \right) - \sqrt 2 \) (1) Ta giải phương trình (1): (1) \( \Leftrightarrow \sqrt 2 u + 2u = 2u + 2 - \sqrt 2 \) \(\eqalign{ & \Leftrightarrow \sqrt 2 u = 2 - \sqrt 2 \cr & \Leftrightarrow \sqrt 2 u = \sqrt 2 \left( {\sqrt 2 - 1} \right) \Leftrightarrow u = \sqrt 2 - 1 \cr} \) Vậy \(\eqalign{ & \left( {\sqrt 2 + 2} \right)\left( {x\sqrt 2 - 1} \right) = 2x\sqrt 2 - \sqrt 2 \cr & \Leftrightarrow x\sqrt 2 - 1 = \sqrt 2 - 1 \cr & \Leftrightarrow x\sqrt 2 = \sqrt 2 \cr & \Leftrightarrow x = 1 \cr} \) c. Nếu đặt u \( = {{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}}\) thì \({{2x - 2} \over {2009}} + {{2x} \over {2010}} + {{2x + 2} \over {2011}} = 2u\) nên phương trình đã cho có dạng \(0,05.2u = 3,3 - u\), hay \(0,1u = 3,3 - u\). Dễ thấy phương trình này có một nghiệm duy nhất u = 3. Do đó \(\eqalign{ & 0,05\left( {{{2x - 2} \over {2009}} + {{2x} \over {2010}} + {{2x + 2} \over {2011}}} \right) \cr & = 3,3-\left( {{{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}}} \right) \cr & \Leftrightarrow {{x - 1} \over {2009}} + {x \over {2010}} + {{x + 1} \over {2011}} = 3 \cr & \Leftrightarrow \left( {{{x - 1} \over {2009}} - 1} \right) + \left( {{x \over {2010}} - 1} \right) + \left( {{{x + 1} \over {2011}} - 1} \right) = 0 \cr & \Leftrightarrow {{x - 2010} \over {2009}} + {{x - 2010} \over {2010}} + {{x - 2010} \over {2011}} = 0 \cr & \Leftrightarrow \left( {x - 2010} \right)\left( {{1 \over {2009}} + {1 \over {2010}} + {1 \over {2011}}} \right) = 0 \cr & \Leftrightarrow x = 2010 \cr} \) Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Phương trình được đưa về dạng ax + b = 0
|
Dùng máy tính bỏ túi để tính giá trị gần đúng các nghiệm của mỗi phương trình sau, làm tròn đến chữ số thập phân thứ ba.