Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 33* trang 161 Sách bài tập (SBT) Toán 9 Tập 1

Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB >CD, chứng minh rằng MH > MK.

Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB  >CD,  chứng minh rằng MH > MK.

Giải:

Ta có:  HA = HB (gt)

Suy ra:  OH ⊥ AB (đường kính dây cung)

Lại có:   KC = KD (gt)

Suy ra:   OK ⊥ CD ( đường kính dây cung)

Mà  AB > CD (gt)

Nên  OK > OH ( dây lớn hơn gần tâm hơn)

Áp dụng định lí Pi-ta-go vào tam giác vuông OHM ta có:

\(O{M^2} = O{H^2} + H{M^2}\)

Suy ra:     \(H{M^2} = O{M^2} - O{H^2}\)      (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông OKM, ta có:

\(O{M^2} = O{K^2} + K{M^2}\)

Suy ra:    \(K{M^2} = O{M^2} - O{K^2}\)                  (2)

Mà  OH < OK (cmt)            (3)

Từ (1), (2) và (3) suy ra: \(H{M^2} > K{M^2}\) hay HM > KM.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.