Câu 3.33 trang 91 sách bài tập Đại số và Giải tích 11 Nâng caoXét dãy số Xét dãy số \(({u_n})\) xác định bởi \({u_1} = a\) và \({u_{n + 1}} = 5 - {u_n}\) với mọi \(n \ge 1,\) trong đó a là số thực. Hãy xác định tất cả các giá trị của a để dãy số \(({u_n})\) là một cấp số cộng. Giải Giả sử \(({u_n})\) là một cấp số cộng. Khi đó, tồn tại một hằng số d sao cho \(\forall n \ge 1,{u_{n + 1}} - {u_n} = d.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\) Từ hệ thức xác định dãy số \(({u_n})\) suy ra \(\forall n \ge 1,{u_{n + 1}} - {u_n} = 5 - 2{u_n}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\) Từ (1) và (2) ta được \({u_n} = {{5 - d} \over 2}\) với mọi \(n \ge 1.\) Vì thế, \(({u_n})\) là một dãy số không đổi. Suy ra, phải có \({u_2} = a\) hay \(5 - a = a,\) dẫn tới \(a = {5 \over 2}.\) Ngược lại, với \(a = {5 \over 2}\) dễ dàng chứng minh được \(u_n = {5 \over 2}\) với mọi \(n\ge 1\). Vì thế dãy số \((u_n)\) là một cấp số cộng với công sai \(d=0\). Tóm lại, có duy nhất giá trị a cần tìm là \(a = {5 \over 2}\). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Cấp số cộng
|
Cho một cấp số cộng có 5 số hạng. biết rằng số hạng thứ hai bằng 3 và số hạng thứ tư bằng 7. Hãy tìm các số hạng còn lại của cấp số cộng đó.
Một cấp số cộng có 7 số hạng mà tổng của số hạng thứ ba và số hạng thứ năm bằng 28, tổng của số hạng thứ năm và số hạng cuối bằng 140. Hãy tìm cấp số cộng đó.
Cho một cấp số cộng có 7 số hạng với công sai dương và số hạng thứ tư bằng 11. Hãy tìm các số hạng còn lại của cấp số cộng đó, biết rằng hiệu của số hạng thứ ba và số hạng thứ năm bằng 6.