Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.33 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao

Xét dãy số

Xét dãy số \(({u_n})\) xác định bởi \({u_1} = a\) và \({u_{n + 1}} = 5 - {u_n}\) với mọi \(n \ge 1,\) trong đó a là số thực.

Hãy xác định tất cả các giá trị của a để dãy số \(({u_n})\) là một cấp số cộng.

Giải

Giả sử \(({u_n})\) là một cấp số cộng. Khi đó, tồn tại một hằng số d sao cho

\(\forall n \ge 1,{u_{n + 1}} - {u_n} = d.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

Từ hệ thức xác định dãy số \(({u_n})\) suy ra

\(\forall n \ge 1,{u_{n + 1}} - {u_n} = 5 - 2{u_n}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\)

Từ (1) và (2) ta được \({u_n} = {{5 - d} \over 2}\) với mọi \(n \ge 1.\) Vì thế, \(({u_n})\) là một dãy số không đổi. Suy ra, phải có \({u_2} = a\) hay \(5 - a = a,\) dẫn tới \(a = {5 \over 2}.\)

Ngược lại, với \(a = {5 \over 2}\) dễ dàng chứng minh được \(u_n = {5 \over 2}\) với mọi \(n\ge 1\). Vì thế dãy số \((u_n)\) là một cấp số cộng với công sai \(d=0\).

Tóm lại, có duy nhất giá trị a cần tìm là \(a = {5 \over 2}\).

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Cấp số cộng