Câu 3.35 trang 91 sách bài tập Đại số và Giải tích 11 Nâng caoMột cấp số cộng có 7 số hạng mà tổng của số hạng thứ ba và số hạng thứ năm bằng 28, tổng của số hạng thứ năm và số hạng cuối bằng 140. Hãy tìm cấp số cộng đó. Một cấp số cộng có 7 số hạng mà tổng của số hạng thứ ba và số hạng thứ năm bằng 28, tổng của số hạng thứ năm và số hạng cuối bằng 140. Hãy tìm cấp số cộng đó. Giải Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ \(n\) của cấp số cộng cần tìm. Theo giả thiết của bài ra, ta có \({u_3} + {u_5} = 28\) và \({u_5} + {u_7} = 140.\)Từ đó \(\left. \matrix{ \(\Rightarrow 2{u_5} = {u_4} + {u_6} = 14 + 70 = 84 \Rightarrow {u_5} = 42.\) Suy ra \(\eqalign{ Vậy, cấp số cộng cần tìm là : \( - 70, - 42, - 14,14,42,70,98.\) sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Cấp số cộng
|
Cho một cấp số cộng có 7 số hạng với công sai dương và số hạng thứ tư bằng 11. Hãy tìm các số hạng còn lại của cấp số cộng đó, biết rằng hiệu của số hạng thứ ba và số hạng thứ năm bằng 6.