Câu 3.43 trang 148 sách bài tập Giải tích 12 Nâng caoTính diện tích hình phẳng giới hạn bởi đồ thị hàm số Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - 3{x^2} + 2x\), trục hoành, trục tung và đường thẳng \(x = 3\) Giải \(S = \int\limits_0^3 {\left| {{x^3} - 3{x^2} + 2x} \right|dx = \int\limits_0^1 {\left( {{x^3} - 3{x^2} + 2x} \right)} } dx\) \( - \int\limits_1^2 {\left( {{x^3} - 3{x^2} + 2x} \right)dx + } \int\limits_2^3 {\left( {{x^3} - 3{x^2} + 2x} \right)dx} \) \(={1 \over 4} - \left( { - {1 \over 4}} \right) + {9 \over 4} = {{11} \over 4}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 5, 6. Một số ứng dụng hình học của tích phân
|