Câu 3.47 trang 93 sách bài tập Đại số và Giải tích 11 Nâng caoCho dãy số Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 2\) và \({u_{n + 1}} = 4{u_n} + 9\) với mọi \(n \ge 1.\) Chứng minh rằng dãy số \(({v_n})\), xác định bởi \(({v_n}) = {u_n} + 3\) với mọi \(n \ge 1,\) Là một cấp số nhân. Hãy xác định số hạng đầu và công bội của cấp số nhân đó. Giải Từ hệ thức xác định dãy số \(({u_n})\) ta có \({u_{n + 1}} + 3 = 4.\left( {{u_n} + 3} \right)\,\,\forall n \ge 1.\) Từ đó, theo định nghĩa dãy số \(({v_n})\) ta được \({v_{n + 1}} = 4.{v_n}\) với mọi \(n \ge 1.\) Vì thế, \(({v_n})\) là một cấp số nhân với công bội \(q = 4\) và số hạng đầu \({v_1} = {u_1} + 3 = 2 + 3 = 5\). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Cấp số nhân
|
Cho một cấp số nhân có 5 số hạng với công bội dương. Biết rằng số hạng thứ hai bằng 3 và số hạng thứ tư bằng 6. Hãy tìm các số hạng còn lại của cấp số nhân đó.
Một cấp số nhân có 7 số hạng với số hạng đầu và cộng bội là số âm. Biết rằng tích của số hạng thứ ba và số hạng số hạng thứ năm bằng 6. Hãy tìm các số hạng còn lại của cấp số nhân đó.
Tìm tam giác có ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC.