Câu 3.5 trang 8 Sách bài tập (SBT) Toán 8 tập 1Chứng minh hằng đẳng thức: Chứng minh hằng đẳng thức: \({\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)\) Giải: Biến đổi vế trái: \(\eqalign{ & {\left( {a + b + c} \right)^3} = {\left[ {\left( {a + b} \right) + c} \right]^3} = {\left( {a + b} \right)^3} + 3{\left( {a + b} \right)^2}c + 3\left( {a + b} \right){c^2} + {c^3} \cr & = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + 3\left( {{a^2} + 2ab + {b^2}} \right)c + 3a{c^2} + 3b{c^2} + {c^3} \cr & = {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{a^2}c + 6abc + 3{b^2}c + 3a{c^2} + 3b{c^2} \cr & = {a^3} + {b^3} + {c^3} + 3ab\left( {a + b} \right) + 3ac\left( {a + b} \right) + 3bc\left( {a + b} \right) + 3{c^2}\left( {a + b} \right) \cr & = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {ab + ac + bc + {c^2}} \right) \cr & = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left[ {a\left( {b + c} \right) + c\left( {b + c} \right)} \right] \cr & = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) \cr} \) Vế trái bằng vế phải đẳng thức được chứng minh.
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
|