Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.60 trang 94 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho dãy số

Cho dãy số \(({u_n})\) xác định bởi

\({u_1} = 2\) và \({u_{n + 1}} = 3.u_n^2 - 10\) với mọi \(n \ge 1.\)

Chứng minh rằng dãy số \(({u_n})\) vừa là cấp số cộng vừa là cấp số nhân.

Giải

Ta chứng minh \(u_n=2\)    (1)    với mọi \(n \ge 1.\)
+) Với n = 1 ta có \(u_1=2\)

+) Giả thiết (1) đúng với n = k, tức là: \({u_k} = 2\)

Ta chứng mình (1) đúng với n = k + 1

\({u_{k + 1}} = 3.u_k^2 - 10 = {3.2^2} - 10 = 2\)

Vậy \({u_n} = 2\) với mọi \(n \ge 1\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 4. Cấp số nhân