Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.7 trang 86 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho số nguyên

Cho số nguyên \(n \ge 2\) và cho số thực \({a_1},{a_2},...,{a_n}\) thuộc khoảng \(\left( {0;1} \right)\). Chứng minh rằng

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_n}} \right) > 1 - {a_1} - {a_2} - ... - {a_n}\)

Giải

Ta sẽ giải bài toán bằng phương pháp quy nạp

Kí hiệu bất đẳng thức cần chứng minh theo yêu cầu của đề bài bởi (1)

Với \(n = 2,\) xét hai số thực túy ý \({a_1},{a_2} \in \left( {0;1} \right)\) ta có

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right) \)

\(= 1 - {a_1} - {a_2} + {a_1}{a_2} > 1 - {a_1} - {a_2}\) (do \({a_1},{a_2} > 0\) )

Như thế, (1) đúng khi \(n = 2\)

Giả sử đã có (1) đúng khi \(n = k,k \in N^*\) và \(k \ge 2,\)

Xét \(k + 1\) số thực tùy ý \({a_1},{a_2},...,{a_k},{a_{k + 1}}\) thuộc khoảng \(\left( {0;1} \right)\)

Vì k số \({a_1},{a_2},...,{a_k}\) thuộc khoảng \(\left( {0;1} \right)\) nên theo giả thiết quy nạp ta có

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right) > 1 - {a_1} - {a_2} - ... - {a_k}\)

Từ đó, vì \(1 - {a_{k + 1}} > 0,\) suy ra

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) >\)

\(\left( {1 - {a_1} - {a_2} - ... - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right)\)                 (2)

Lại có

\(\eqalign{
& \left( {1 - {a_1} - {a_2} - ... - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) \cr
& = 1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}} \cr&+ \left( {1 - {a_1} - {a_2} - ... - {a_k}} \right){a_{k + 1}} \cr
& > 1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)

Từ (2) và (3) ta được

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) > \)

\(1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}}\)

Như vậy (1) cũng đúng khi \(n = k + 1\)

Từ các chứng minh trên suy ra có điều cần chứng minh theo yêu cầu của để bài.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.