Câu 4.19 trang 136 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh rằng a) Chứng minh rằng nếu dãy số \(\left( {{u_n}} \right)\) có giới hạn hữu hạn và dãy \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn thì dãy số \(\left( {{u_n} + {v_n}} \right)\) không có giới hạn hữu hạn. b) Dãy số \(\left( {{{\left( { - 1} \right)}^n} + {1 \over n}} \right)\) có giới hạn hữu hạn hay không ? Giải a) Đặt \({{\rm{w}}_n} = {u_n} + {v_n}.\) Ta chứng minh dãy số \(\left( {{\rm{w}_n}} \right)\) không có giới hạn hữu hạn, bằng phản chứng. Giả sử \(\lim {{\rm{w}}_n} = M \in R.\) Khi đó \(\lim {v_n} = \lim \left( {{{\rm{w}}_n} - {u_n}} \right) = M - L.\) Ta đi đến mâu thuẫn b) Chứng minh tương tự câu a): Dãy số \({\left( { - 1} \right)^n}\) không có giới hạn hữu hạn và dãy số \(\left( {{1 \over n}} \right)\) có giới hạn hữu hạn \(\left( {\lim {1 \over n} = 0} \right).\) Do đó dãy số \(\left( {{{\left( { - 1} \right)}^n} + {1 \over n}} \right)\) không có giới hạn hữu hạn. Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 2: Dãy có giới hạn hữu hạn
|