Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.19 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

a) Chứng minh rằng nếu dãy số \(\left( {{u_n}} \right)\) có giới hạn hữu hạn và dãy \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn thì dãy số \(\left( {{u_n} + {v_n}} \right)\) không có giới hạn hữu hạn.

b) Dãy số \(\left( {{{\left( { - 1} \right)}^n} + {1 \over n}} \right)\) có giới hạn hữu hạn hay không ?

Giải

a) Đặt \({{\rm{w}}_n} = {u_n} + {v_n}.\) Ta chứng minh dãy số \(\left( {{\rm{w}_n}} \right)\) không có giới hạn hữu hạn, bằng phản chứng. Giả sử \(\lim {{\rm{w}}_n} = M \in R.\) Khi đó \(\lim {v_n} = \lim \left( {{{\rm{w}}_n} - {u_n}} \right) = M - L.\) Ta đi đến mâu thuẫn

b) Chứng minh tương tự câu a): Dãy số \({\left( { - 1} \right)^n}\) không có giới hạn hữu hạn và dãy số \(\left( {{1 \over n}} \right)\) có giới hạn hữu hạn \(\left( {\lim {1 \over n} = 0} \right).\) Do đó dãy số \(\left( {{{\left( { - 1} \right)}^n} + {1 \over n}} \right)\) không có giới hạn hữu hạn.

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.