Câu 4.27 trang 210 sách bài tập (SBT) - Giải tích 12Biết z1 và z2 là hai nghiệm của phương trình. Hãy tính: Biết z1 và z2 là hai nghiệm của phương trình \(2{x^2} + \sqrt 3 x + 3 = 0\) . Hãy tính: a) \(z_1^2 + z_2^2\) b) \(z_1^3 + z_2^3\) c) \(z_1^4 + z_2^4\) d) \({{{z_1}} \over {{z_2}}} + {{{z_2}} \over {{z_1}}}\) Hướng dẫn làm bài Ta có: \({z_1} + {z_2} = - {{\sqrt 3 } \over 2},{z_1}.{z_2} = {3 \over 2}\) . Từ đó suy ra: a) \(z_1^2 + z_2^2 = {({z_1} + {z_2})^2} - 2{z_1}{z_2} = {3 \over 4} - 3 = - {9 \over 4}\) b) \(z_1^3 + z_2^3 = ({z_1} + {z_2})(z_1^2 - {z_1}{z_2} + z_2^2)\) \(= - {{\sqrt 3 } \over 2}( - {9 \over 4} - {3 \over 2}) = {{15\sqrt 3 } \over 8}\) c) \(z_1^4 + z_2^4 = (z_1^2 + z_2^2) - 2z_1^2.z_2^2 = {( - {9 \over 4})^2} - 2.{({3 \over 2})^2} = {9 \over {16}}\) d) \({{{z_1}} \over {{z_2}}} + {{{z_2}} \over {{z_1}}} = {{z_1^2 + z_2^2} \over {{z_1}.{z_2}}} = {{ - {9 \over 4}} \over {{3 \over 2}}} = - {3 \over 2}\). Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Phương trình bậc hai với hệ số thực
|
Chứng minh rằng hai số phức liên hợp z và là hai nghiệm của một phương trình bậc hai với hệ số phức.
Giải phương trình: 8z2 – 4z + 1 = 0 trên tập số phức.