Câu 4.30 trang 182 sách bài tập Giải tích 12 Nâng caoÁc định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z sao cho Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z sao cho \({{z - 2} \over {z + 2}}\) có một acgumen bằng \({\pi \over 3}\) Giải \({{z - 2} \over {z + 2}} = {{z\overline z - 4 + 2\left( {z - \overline z} \right)} \over {{{\left| {z + 2} \right|}^2}}}\) có một acgumen bằng \({\pi \over 3}\) khi và chỉ khi \(z\bar z - 4 + 2\left( {z - \bar z} \right) = l\left( {1 + i\sqrt 3 } \right)\), l là số thực dương. Nếu viết \(z = x + yi\left( {x,y \in R} \right)\) thì \(\eqalign{& z\bar z - 4 + 2\left( {z - \bar z} \right) = {x^2} + {y^2} - 4 + 4yi \cr&\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\; = l + l\sqrt 3 i\left( { > 0} \right) \cr& \Leftrightarrow 4y = \left( {{x^2} + {y^2} - 4} \right)\sqrt 3 \cr&\Leftrightarrow {x^2} + {\left( {y - {2 \over {\sqrt 3 }}} \right)^2} - {{16} \over 3} = 0 \cr} \)
Vậy M chạy trên cung tròn có tâm biểu diễn \({2 \over {\sqrt 3 }}i\) và có bán kính bằng \({4 \over {\sqrt 3 }}\) nằm ở phía trên trục thực. Chú ý: A’, A là các điểm theo thứ tự biểu diễn -2. 2 thì điều kiện \({{z - 2} \over {z + 2}}\) có một acgumen bằng \({\pi \over 3}\) có nghĩa là góc lượng giác tia đầu MA’, tia cuối MA’ (M là điểm biểu diễn z) bằng \({\pi \over 3}\). Suy ra quỹ tích của M là cung tròn chứa góc \({\pi \over 3}\) căng trên đoạn A’A (không kể A, A’) (h.4.11)
Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Dạng lượng giác của số phức. Ứng dụng
|
Cho A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số
Cho tam giác đều OAB trong mặt phằng phức (O là gốc tọa độ). Chứng minh rằng nếu A, B theo thứ tự biểu diễn các số