Câu 4.36 trang 182 sách bài tập Giải tích 12 Nâng caoCho a) Cho \(z = c{\rm{os}}\varphi {\rm{ + }}i\sin \varphi \left( {\varphi \in R} \right)\). Chứng minh rằng với mọi số nguyên \(n \ge 1\), ta có \({z^n} + {1 \over {{z^n}}} = 2\cos n\varphi ,{z^n} - {1 \over {{z^n}}} = 2i\sin n\varphi \) b) Từ câu a), chứng minh rằng \(c{\rm{o}}{{\rm{s}}^4}\varphi = {1 \over 8}\left( {{\rm{cos4}}\varphi + 4\cos 2\varphi + 3} \right)\) \({\sin ^5}\varphi = {1 \over {16}}\left( {\sin 5\varphi - 5\sin 3\varphi + 10\sin \varphi } \right)\) Giải a) \({z^n} = \cos n\varphi + i\sin n\varphi ,{1 \over {{z^n}}} = \cos n\varphi - i\sin n\varphi \) nên \({z^n} + {1 \over {{z^n}}} = 2\cos n\varphi ,{z^n} - {1 \over {{z^n}}} = 2i\sin n\varphi \) (Đặc biệt \({z} + {1 \over z} = 2\cos \varphi ,z - {1 \over z} = 2i\sin \varphi \)). b) \(c{\rm{o}}{{\rm{s}}^4}\varphi = {\left[ {{1 \over 2}\left( {z + {1 \over z}} \right)} \right]^{ - 4}} \) \(= {1 \over {{2^4}}}\left[ {{z^4} + {1 \over {{z^4}}} + C_4^1\left( {{z^2} + {1 \over {{z^2}}}} \right) + C_4^2} \right]\) \( = {1 \over {{2^4}}}\left( {2\cos 4\varphi + 4.2cos2\varphi + 6} \right) \) \(= {1 \over 8}\left( {\cos 4\varphi + 4cos2\varphi + 3} \right)\) \({\sin ^5}\varphi = {\left[ {{1 \over {2i}}\left( {z - {1 \over z}} \right)} \right]^5}\) \( = {1 \over {{2^5}i}}\left[ {\left( {{z^5} - {1 \over {{z^5}}}} \right) - C_5^1\left( {{z^3} - {1 \over {{z^3}}}} \right) + C_5^2\left( {z - {1 \over z}} \right)} \right]\) \( = {1 \over {{2^5}}}\left( {2\sin 5\varphi - 2C_5^1\sin 3\varphi + 2C_5^2\sin \varphi } \right)\) \(={1 \over {16}}\left( {\sin 5\varphi - 5\sin 3\varphi + 10\sin \varphi } \right)\). Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Dạng lượng giác của số phức. Ứng dụng
|
Hãy chọn một phương án trong bốn phương án đã cho để được khẳng định đúng.
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số