Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.45 trang 184 sách bài tập Giải tích 12 Nâng cao

a) Cho số phức

a) Cho số phức \(\alpha  = a + bi\left( {a,b \in Z} \right)\) khác 0. Chứng minh rằng tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z = x + yi\left( {x,y \in R} \right)\) sao cho \(\bar \alpha z + \alpha \bar z\) (k là số thực cho trước) là một đường thẳng.

b) Tìm \(\alpha \) và k trong câu a) để đường thẳng nói trên đi qua điểm biểu diễn số 2 và 3i.

Giải

a) Từ \(\alpha  = a + ib,z = x + iy\)  \((a,b,x,y \in R)\) nên

\(\overline \alpha  z + \alpha \overline z  = k \Leftrightarrow ax + by = {k \over 2}\)

b) Chọn \(a = {1 \over 2},b = {1 \over 3}\) (tức  \(\alpha  = {1 \over 2} + {1 \over 3}i\)), k = 2 (không duy nhất).

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Ôn tập chương IV - Số phức