Câu 4.67 trang 145 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh rằng phương trình có ít nhất một nghiệm âm Chứng minh rằng phương trình \({x^3} + 1000{x^2} + 0,1 = 0\) Có ít nhất một nghiệm âm. Giải Hàm số \(f\left( x \right) = {x^3} + 1000{x^2} + 0,1\) liên tục trên R. Ta có \(f\left( 0 \right) = 0,1 > 0.\) Vì \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty \) nên tồn tại một số âm a sao cho \(f\left( a \right) < 0.\) Vì \(f\left( 0 \right)f\left( a \right) < 0\) nên, theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại một số thực \(c \in \left( {a;0} \right)\) sao cho \(f\left( c \right) = 0.\) Số \(x = c\) là một nghiệm âm của phương trình đã cho. Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 8: Hàm số liên tục
|