Câu 4.77 trang 149 sách bài tập Đại số và Giải tích 11 Nâng caoTìm các giới hạn sau: Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to 2} {{\sqrt {3x - 2} - 2} \over {{x^2} + 7x - 18}}\) b) \(\mathop {\lim }\limits_{x \to - 1} {{\sqrt {{x^2} + x + 2} - \sqrt {1 - x} } \over {{x^4} + x}}\) c) \(\mathop {\lim }\limits_{x \to 4} {{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}}\) d) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 8x} - \sqrt {{x^2} - x} } \right).\) Giải a) \({3 \over {44}};\) b) 0; c) Với \(x > 2,\) ta có \(\left| {x - 1} \right| = x - 1\) và \(\left| {x - 2} \right| = x - 2.\) Do đó \({{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}} = {{3 - \left( {x - 1} \right)} \over {x - 2 - 2}} = {{4 - x} \over {x - 4}} = - 1\) với \(x > 2\) và \(x \ne 4.\) Do đó \(\mathop {\lim }\limits_{x \to 4} {{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}} = \mathop {\lim }\limits_{x \to 4} \left( { - 1} \right) = - 1;\) d) \( - {9 \over 2}.\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương IV - Giới hạn - SBT Toán 11 Nâng cao
|
Chứng minh rằng phương trình có ít nhất một nghiệm dương.