Câu 4.9 trang 103 SBT Đại số 10 Nâng caoGiải bài tập Câu 4.9 trang 103 SBT Đại số 10 Nâng cao. a. Chứng minh rằng, với mọi số nguyên dương k ta đều có \(\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\) b. Áp dụng. Chứng minh rằng \(\dfrac{1}{2} + \dfrac{1}{{3\sqrt 2 }} + \dfrac{1}{{4\sqrt 3 }} + ... + \dfrac{1}{{\left( {n + 1} \right)\sqrt n }} < 2.\) Giải: a. Ta có: \(\begin{array}{l}\dfrac{1}{{\left( {k + 1} \right)\sqrt k }} = \dfrac{{\sqrt k }}{{\left( {k + 1} \right)k}} = \sqrt k \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right)\\ = \sqrt k \left( {\dfrac{1}{{\sqrt k }} + \dfrac{1}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\\ = \left( {1 + \dfrac{{\sqrt k }}{{\sqrt {k + 1} }}} \right)\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right) < 2\left( {\dfrac{1}{{\sqrt k }} - \dfrac{1}{{\sqrt {k + 1} }}} \right)\end{array}\) b. \(\begin{array}{l}\dfrac{1}{2} + \dfrac{1}{{3\sqrt 2 }} + \dfrac{1}{{4\sqrt 3 }} + ... + \dfrac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\left( {1 - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 4 }} + ... + \dfrac{1}{{\sqrt n }} - \dfrac{1}{{\sqrt {n + 1} }}} \right)\\ = 2\left( {1 - \dfrac{1}{{\sqrt {n + 1} }}} \right) < 2\end{array}\) Sachbaitap.com
Xem thêm tại đây:
Bài 1. Bất đẳng thức và chứng minh bất đẳng thức
|