Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 51 trang 108 Sách Bài Tập (SBT) Toán 9 Tập 2

Chứng minh DI.DI=AI.AD.

Cho ngũ giác đều ABCDE. Gọi I là giao điểm của AD và BE. Chứng minh \(D{I^2} = AI.AD\).

Giải

Vẽ đường tròn ngoại tiếp ngũ giác ABCDE

sđ \(\overparen{AB}\) = sđ \(\overparen{BC}\) = sđ \(\overparen{CD}\) = sđ \(\overparen{DE}\) = sđ \(\overparen{AE}\)= 720                        (1)

\(\widehat {{E_1}} = {1 \over 2}\) sđ \(\overparen{AB}\) (tính chất góc nội tiếp)     (2)

\(\widehat {{D_1}} = {1 \over 2}\) sđ \(\overparen{AE}\) (tính chất góc nội tiếp)           (3)

Từ (1), (2) và (3) suy ra: \(\widehat {{E_1}} = \widehat {{D_1}}\)

Xét ∆AIE và ∆AED:

\(\widehat {{E_1}} = \widehat {{D_1}}\) (chứng minh trên)

\(\widehat A\) chung

Suy ra: ∆AIE đồng dạng ∆AED (g.g)

\({{AI} \over {AE}} = {{AE} \over {AD}}\)

\( \Rightarrow \) AE2 = AI. AD     (*)

\(\widehat {{E_2}} = {1 \over 2}\) sđ \(\overparen{BCD}\) (tính chất góc nội tiếp) hay \(\widehat {{E_2}} = {1 \over 2}\) (sđ \(\overparen{BC}\) + sđ \(\overparen{CD}\))            (4)

\(\widehat {{I_1}} = {1 \over 2}\) (sđ \(\overparen{DE}\) + sđ \(\overparen{AB}\)) (tính chất góc có đỉnh ở trong đường tròn)                                 (5)

Từ (1), (4) và (5) suy ra: \(\widehat {{E_2}} = \widehat {{I_1}}\)

\( \Rightarrow \) △DEI cân tại D \( \Rightarrow \) DE = DI

                DE = AE (gt)

Suy ra: DI = AE    (**)

Từ (*) và (**) suy ra: DI2 = AI. AD

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.