Câu 52 trang 165 Sách bài tập (SBT) Toán 9 Tập 1Cho đường tròn (I) nội tiếp tam giác ABC. Các tiếp điểm trên AC, AB theo thứ tự là D, E. Cho BC = a, AC = b, AB = c. Tính độ dài các đoạn tiếp tuyến AD, AE theo a, b, c. Cho đường tròn (I) nội tiếp tam giác ABC. Các tiếp điểm trên AC, AB theo thứ tự là D, E. Cho BC = a, AC = b, AB = c. Tính độ dài các đoạn tiếp tuyến AD, AE theo a, b, c. Giải: Gọi F là tiếp điểm của đường tròn (I) với BC. Theo tính chất của hai tiếp tuyến cắt nhau, ta có: AE = AD BE = BF CD = CF Mà: AE = AB – BE AD = AC – CD Nên: AE + AD = (AB –BE) + (AC – CD) = AB + AC – (BE + CD) = AB + AC – (BF + CF) = AB + AC – BC Suy ra: AE + AD = c + b – a Hay: \(AE = AD ={{c + b - a} \over 2}\) Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
|
Tính diện tích tam giác đều ABC ngoại tiếp đường tròn (I; r).
Cho đường tròn (O; 3cm) và điểm A có AO = 5cm. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Gọi H là giao điểm của AO và BC.
Cho đường tròn (O; 2cm), các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B và C là các tiếp điểm).
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng: