Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 5.21 trang 182 sách bài tập Đại số và Giải tích 11 Nâng cao

Tính

Tính \(f'\left( {{\pi  \over 6}} \right)\) và \(f'\left( {{\pi  \over 3}} \right)\)  ( nếu có) biết

                             \(f\left( x \right) = {{\cos x} \over {\sqrt {\cos 2x} }}\)

Giải

Để hàm số có đạo hàm thì ta phải có \(\cos 2x > 0.\) Với điều kiện đó thì

\( f'\left( x \right) = {{ - \sin x\sqrt {\cos 2x}  - \cos x.{1 \over {2\sqrt {\cos 2x} }}\left( { - 2\sin 2x} \right)} \over {\cos 2x}}  \)

            \(= {{ - \sin x\cos 2x + \cos x\sin 2x} \over {\cos 2x\sqrt {\cos 2x} }} = {{\sin x} \over {\sqrt {{{\cos }^3}2x} }} \)

\( \bullet \) Khi \(x = {\pi  \over 3}\)  thì \(\cos 2x = \cos {{2\pi } \over 3} < 0\) , nên không tồn tại \(f'\left( {{\pi  \over 3}} \right)\)

\( \bullet \) Khi \(x = {\pi  \over 6}\)  thì \(\cos 2x = \cos {\pi  \over 3} > 0\) , nên không tồn tại \(f'\left( {{\pi  \over 6}} \right)\)  và

                        \(f'\left( {{\pi  \over 6}} \right) = {{\sin {\pi  \over 6}} \over {\sqrt {{{\cos }^3}{\pi  \over 3}} }} = {{{1 \over 2}} \over {\sqrt {{{\left( {{1 \over 2}} \right)}^3}} }} = \sqrt 2 .\)         

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.