Câu 56 trang 14 Sách bài tập (SBT) Toán 8 tập 1Rút gọn biểu thức Rút gọn biểu thức a. \({\left( {6x + 1} \right)^2} + {\left( {6x - 1} \right)^2} - 2\left( {1 + 6x} \right)\left( {6x - 1} \right)\) b. \(3\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right)\left( {{2^{16}} + 1} \right)\) Giải: a. \({\left( {6x + 1} \right)^2} + {\left( {6x - 1} \right)^2} - 2\left( {1 + 6x} \right)\left( {6x - 1} \right)\) \(\eqalign{ & = {\left( {6x + 1} \right)^2} - 2\left( {6x + 1} \right)\left( {6x - 1} \right) + {\left( {6x - 1} \right)^2} = {\left[ {\left( {6x + 1} \right) - \left( {6x - 1} \right)} \right]^2} \cr & = {\left( {6x + 1 - 6x + 1} \right)^2} = {2^2} = 4 \cr} \) b. \(3\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right)\left( {{2^{16}} + 1} \right)\) \(\eqalign{ & = \left( {{2^2} - 1} \right)\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right)\left( {{2^{16}} + 1} \right) \cr & = \left( {{2^4} - 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right)\left( {{2^{16}} + 1} \right) = \left( {{2^8} - 1} \right)\left( {{2^8} + 1} \right)\left( {{2^{16}} + 1} \right) \cr & = \left( {{2^{16}} - 1} \right)\left( {{2^{16}} + 1} \right) = {2^{32}} - 1 \cr} \)
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài tập ôn Chương I. Phép nhân và phép chia các đa thức a
|
Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau: