Câu 58 trang 126 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 58 trang 126 Sách bài tập Hình học 11 Nâng cao Cho hình chóp A.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng a. a) Chứng minh rằng SAC là tam giác vuông. b) Tính đường cao SH của hình chóp đã cho. Trả lời a) Gọi O là giao điểm của AC và BD thì \(OA = OC,OB = O{\rm{D}}\). Vì \(SB = S{\rm{D}} = CB = C{\rm{D}}\) nên \(\Delta BC{\rm{D}} = \Delta B{\rm{SD}}\), từ đó \(SO = OC = OA\). Vậy SAC là tam giác vuông tại S. b) \(\left. \matrix{ AC \bot B{\rm{D}} \hfill \cr {\rm{SO}} \bot {\rm{BD}} \hfill \cr} \right\} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\), từ đó \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\). Vậy nếu kẻ đường cao SH của tam giác SAC thì \(SH \bot \left( {ABC{\rm{D}}} \right)\), do đó \(d\left( {S;mp\left( {ABC{\rm{D}}} \right)} \right) = SH = {{SA.SC} \over {AC}} = {{a.x} \over {\sqrt {{a^2} + {x^2}} }}\). Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 5: Khoảng cách
|
Giải bài tập Câu 59 trang 126 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 60 trang 126 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 61 trang 126 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 62 trang 126 Sách bài tập Hình học 11 Nâng cao