Câu 6.35 trang 201 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.35 trang 201 SBT Đại số 10 Nâng cao Tính a) \(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} + \ldots + \cos \dfrac{{8\pi }}{9};\) b) \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}}\); c) \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9}\); d) \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} + \ldots + \cos \dfrac{{9\pi }}{5};\) e) \(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} + \ldots + \sin \dfrac{{9\pi }}{5}\) Giải: a) \(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} + \ldots + \cos \dfrac{{8\pi }}{9} = 0\), do \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha .\) b) Do \(\sin \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{6}\) nên \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} = 1.\) Do \(\sin \dfrac{{7\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{9}} \right) = \cos \dfrac{\pi }{9}\) nên \({\sin ^2}\dfrac{{7\pi }}{{18}} + {\sin ^2}\dfrac{\pi }{9} = 1\). Do \(\sin \dfrac{{5\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) = \cos \dfrac{{2\pi }}{9}\) nên \({\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} = 1\). Vậy \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}} = 3\) c) Do \(\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) = - \sin \dfrac{\pi }{3}\), nên \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} = 1\). Do \(\cos \dfrac{{11\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{9}} \right) = - \sin \dfrac{\pi }{9}\), nên \({\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} = 1\) Do \(\cos \dfrac{{13\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{2\pi }}{9}} \right) = - \sin \dfrac{{2\pi }}{9}\), nên \({\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 1\) Vậy \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 3\) d) Do \(\cos \dfrac{{6\pi }}{5} = \cos \left( {\pi + \dfrac{\pi }{5}} \right) = - \cos \dfrac{\pi }{5};\) \(\cos \dfrac{{7\pi }}{5} = - \cos \dfrac{{2\pi }}{5};\cos \dfrac{{8\pi }}{5} = - \cos \dfrac{{3\pi }}{5};\) \(\cos \dfrac{{9\pi }}{5} = - \cos \dfrac{{4\pi }}{5};\cos \pi = - 1\) nên \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} + \ldots + \cos \dfrac{{9\pi }}{5} = - 1\) e) Tương tự đối với sin, nhưng ở đây \(\sin \pi = 0\), ta có : \(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} + \ldots + \sin \dfrac{{9\pi }}{5} = 0.\) (Chú ý: Ta cũng có thể xét thập giác đều có các đỉnh là \({A_k}\) là các điểm trên đường tròn lượng giác, xác định bởi các số \(\dfrac{{k\pi }}{5}\) (k = 1; 2; 3; 4; ....; 9; 10) và nhận xét rằng \(\overrightarrow {O{A_1}} + \overrightarrow {O{A_2}} + \ldots \overrightarrow {O{A_{10}}} = \overrightarrow 0 \)) Sachbaitap.com
Xem thêm tại đây:
Bài 3. Giá trị lượng giác của các góc (cung) có liên quan đặc biệt
|