Câu 6.48 trang 205 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.48 trang 205 SBT Đại số 10 Nâng cao Cho \(\cos \alpha = m\). Hãy tính \({\cos ^2}\dfrac{\alpha }{2};{\sin ^2}\dfrac{\alpha }{2};{\tan ^2}\dfrac{\alpha }{2}\) theo m (giả sử \(\tan \dfrac{\alpha }{2}\) xác định) Giải: \(\begin{array}{l}{\cos ^2}\dfrac{\alpha }{2} = \dfrac{{1 + \cos \alpha }}{2} = \dfrac{{1 + m}}{2};\\{\sin ^2}\dfrac{\alpha }{2} = \dfrac{{1 - \cos \alpha }}{2} = \dfrac{{1 - m}}{2};\\{\tan ^2}\dfrac{\alpha }{2} = \dfrac{{1 - m}}{{1 + m}}.\end{array}\) Sachbaitap.com
Xem thêm tại đây:
Bài 4. Một số công thức lượng giác
|