Câu 6.62 trang 207 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.62 trang 207 SBT Đại số 10 Nâng cao Chứng minh rằng với mọi \(\alpha \) mà \(\sin 2\alpha \ne 0\), ta có \(\sin \left( {\cot \alpha } \right) + \sin \left( {\tan \alpha } \right) = 2\sin \left( {\dfrac{1}{{\sin 2\alpha }}} \right)\cos \left( {\cot 2\alpha } \right)\) Giải: Đặt \(u = \dfrac{1}{2}\left( {\tan \alpha + \cot \alpha } \right),\) \(v = \dfrac{1}{2}\left( {\tan \alpha - \cot \alpha } \right)\) thì \(u + v = \tan \alpha ,u - v = \cot \alpha \). Khi đó ta có \(\begin{array}{l}\sin \left( {\tan \alpha } \right) + \sin \left( {\cot \alpha } \right)\\ = \sin \left( {u + v} \right) + \sin \left( {u - v} \right)\\ = 2\sin u\cos v\\ = 2\sin \left[ {\dfrac{1}{2}\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }} + \dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right].\cos \left[ {\dfrac{1}{2}\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }} - \dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right]\\ = 2\sin \left( {\dfrac{1}{{2\sin \alpha \cos \alpha }}} \right).\cos \left( {\dfrac{{{{\sin }^2}\alpha - {{\cos }^2}\alpha }}{{2\sin \alpha \cos \alpha }}} \right)\\ = 2\sin \left( {\dfrac{1}{{\sin 2\alpha }}} \right).\cos \left( {\cot 2\alpha } \right).\end{array}\) Sachbaitap.com
Xem thêm tại đây:
Bài tập Ôn tập chương VI – Góc lượng giác và công thức lượng giác
|