Câu 79 trang 170 Sách bài tập (SBT) Toán 9 Tập 1Cho đường tròn (O ; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A ; 2R). Cho đường tròn (O ; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A ; 2R). a) Hai đường tròn (O) và (A) có vị trí tương đối như thế nào đối với nhau? b) Gọi B là một giao điểm của hai đường tròn trên. Vẽ đường kính BOC của đường tròn (O). Gọi D là giao điểm ( khác C) của AC và đường tròn (O). Chứng minh rằng AD = DC. Giải: a) Ta có: R < OA < 3R ⇔ 2R- R < OA < 2R + R Suy ra hai đường tròn (O; R) và (A; 2R) cắt nhau. b) Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên \(\widehat {BDC} = 90^\circ \) Suy ra: BD ⊥ AC (1) Ta có: AB = 2R và BC = 2OB = 2R Suy ra tam giác ABC cân tại B (2) Từ (1) và (2) suy ra: AD = DC Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
Xem thêm tại đây:
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
|
Cho đường tròn (O ; 2cm) tiếp xúc với đường thẳng d. Dựng đường tròn (O’ ; 1cm) tiếp xúc với đường thẳng d và tiếp xúc ngoài đường tròn (O).
Cho hai đường tròn (O ; R) và (O' ; r). Điền vào chỗ trống của bảng sau:
Cho hai đường tròn (O ; 3cm) và (O ; 4cm) có OO' = 5cm.
Cho đường tròn (O) và điểm A cố định trên đường tròn. Điểm B chuyển động trên đường tròn.