Câu 87 trang 26 Sách Bài Tập (SBT) Toán Lớp 6 tập 2Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng. a) Cho hai phân số \({1 \over n}\) và \({1 \over {n + 1}}\left( {n \in Z,n > 0} \right)\). Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng. b) Áp dụng kết quả trên để tính giá trị các biểu thức sau: \({\rm{A}} = {1 \over 2}.{1 \over 3} + {1 \over 3}.{1 \over 4} + {1 \over 4}.{1 \over 5} + {1 \over 5}.{1 \over 6} + {1 \over 6}.{1 \over 7} + {1 \over 7}.{1 \over 8} + {1 \over 8}.{1 \over 9}\) \(B = {1 \over {30}} + {1 \over {42}} + {1 \over {56}} + {1 \over {72}} + {1 \over {90}} + {1 \over {110}} + {1 \over {132}}\) Giải a) \({\rm{}}{1 \over n}.{1 \over {n + 1}} = {1 \over {n(n + 1)}}\) (1) (n ∈ Z, n ≠ 0) \({1 \over n} - {1 \over {n + 1}} = {1 \over n} + {{ - 1} \over {n + 1}} \) \(= {{n + 1} \over {n(n + 1)}} + {{ - n} \over {n(n + 1)}} = {{n + 1 - n} \over {n(n + 1)}} \) \(= {1 \over {n(n + 1)}}\) (2) Từ (1) và (2) ta có: \({1 \over n}.{1 \over {n + 1}} = {1 \over n} - {1 \over {n + 1}}\left( {n \in Z,n > 0} \right)\) b) Áp dụng kết quả câu a ta có: \({\rm{A}} = {1 \over 2}.{1 \over 3} + {1 \over 3}.{1 \over 4} + {1 \over 4}.{1 \over 5} + {1 \over 5}.{1 \over 6} + {1 \over 6}.{1 \over 7} + {1 \over 7}.{1 \over 8} + {1 \over 8}.{1 \over 9}\) \(\eqalign{ \(B = {1 \over {30}} + {1 \over {42}} + {1 \over {56}} + {1 \over {72}} + {1 \over {90}} + {1 \over {110}} + {1 \over {132}}\) \(\eqalign{ Sachbaitap.net
Xem lời giải SGK - Toán 6 - Xem ngay >> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 10: Phép nhân phân số
|
Chứng tỏ rằng tích của hai phân số này bằng tổng của chúng.
Áp dụng các tính chất của phép nhân phân số để tính nhanh.