Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SBT Toán 10 trang 129, 130 Chân trời sáng tạo tập 1

Giải bài 1, 2, 3 trang 129, bài 74, 5, 6 trang 130 SBT Toán 10 Chân trời sáng tạo tập 1. Bài 1. Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:

Bài 1 trang 129 SBT Toán 10 - Chân trời sáng tạo

Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:

a)     90;     56;     50;     45;     46;     48;     52;     43.

b)    19;     11;     1;       16;     19;     12;     14;     10;     11.

c)     6,7;    6,2;    9,7;    6,3;    6,8;    6,1;    6,2.

d)    0,79;  0,68;  0,35;  0,38;  0,05;  0,35.

Phương pháp:

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)

Lời giải:

a) Ta có: n = 8.

Số trung bình cộng:

Sắp xếp mẫu số liệu theo thứ tự không giảm:

43; 45; 46; 48; 50; 52; 56; 90

Khi đó, khoảng biến thiên R = 90 – 43 = 47.

Vì n = 8 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (48 + 50) : 2 = 49.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 43; 45; 46; 48.

Vậy Q1 = (45 + 46) : 2 = 45,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 50; 52; 56; 90.

Vậy Q3 = (52 + 56) : 2 = 54.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 54 – 45,5 = 8,5.

 Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 54 + 1,5.8,5 = 66,75

Hoặc x < Q1 − 1,5∆Q = 45,5 − 1,5.8,5 = 32,75

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 90.

b) Ta có: n = 9.

Số trung bình cộng:

 

Sắp xếp mẫu số liệu theo thứ tự không giảm:

1; 10; 11; 11; 12; 14; 16; 19; 19

Khi đó, khoảng biến thiên R = 19 – 1 = 18.

Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 12.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Qvì n là số lẻ: 1; 10; 11; 11.

Vậy Q1 = (10 + 11) : 2 = 10,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Qvì n là số lẻ: 14; 16; 19; 19.

Vậy Q3 = (16 + 19) : 2 = 17,5.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 17,5 – 10,5 = 7.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 17,5 + 1,5.7 = 28

 Hoặc x < Q1 − 1,5∆Q = 10,5 − 1,5.7 = 0

Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.

c) Ta có: n = 7.

Số trung bình cộng:

Sắp xếp mẫu số liệu theo thứ tự không giảm:

6,1; 6,2; 6,2; 6,3; 6,7; 6,8; 9,7

Khi đó, khoảng biến thiên R = 9,7 – 6,1 = 3,6.

Vì n = 7 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6,3.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Qvì n là số lẻ: 6,1; 6,2; 6,2.

Vậy Q1 = 6,2.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Qvì n là số lẻ: 6,7; 6,8; 9,7.

Vậy Q3 = 6,8.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 6,8 – 6,2 = 0,6.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 6,8 + 1,5.0,6 = 7,7

Hoặc x < Q1 − 1,5∆Q = 6,2 − 1,5.0,6 = 5,3

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 9,7.

d) Ta có: n = 6.

Số trung bình cộng:

Sắp xếp mẫu số liệu theo thứ tự không giảm:

0,05; 0,35; 0,35; 0,38; 0,68; 0,79

Khi đó, khoảng biến thiên R = 0,79 – 0,05 = 0,74.

Vì n = 6 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (0,35 + 0,38) : 2 = 0,365.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 0,05; 0,35; 0,35.

Vậy Q1 = 0,35.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 0,38; 0,68; 0,79.

Vậy Q3 = 0,68.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 0,68 – 0,35 = 0,33.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 0,68 + 1,5.0,33 = 1,175

Hoặc x < Q1 − 1,5∆Q = 0,35 − 1,5.0,33 = −0,145.

Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.

Bài 2 trang 129 SBT Toán 10 - Chân trời sáng tạo

Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:

a)

Giá trị

0

4

6

9

10

17

Tần số

1

3

5

4

2

1

b)

Giá trị

2

23

24

25

26

27

Tần số

1

6

8

9

4

2

 Phương pháp:

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)

Lời giải:

a) Ta có: n = 1 + 3 + 5 + 4 + 2 + 1 = 16.

Số trung bình cộng:

Sắp xếp mẫu số liệu theo thứ tự không giảm:

0; 4; 4; 4; 6; 6; 6; 6; 6; 9; 9; 9; 9; 10; 10; 17

Khi đó, khoảng biến thiên R = 17 – 0 = 17.

Vì n = 16 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (6 + 6) : 2 = 6.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 0; 4; 4; 4; 6; 6; 6; 6.

Vậy Q1 = (4 + 6) : 2 = 5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 6; 9; 9; 9; 9; 10; 10; 17.

Vậy Q3 = (9 + 9) : 2 = 9.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 9 – 5 = 4.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 9 + 1,5.4 = 15

Hoặc x < Q1 − 1,5∆Q = 5 − 1,5.4 = −1.

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 17.

b) Ta có: n = 1 + 6 + 8 + 9 + 4 + 2 = 30.

Số trung bình cộng:

 

Sắp xếp mẫu số liệu theo thứ tự không giảm:

2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24; 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27

Khi đó, khoảng biến thiên R = 27 – 2 = 25.

Vì n = 30 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (24 + 25) : 2 = 24,5.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 2; 23; 23; 23; 23; 23; 23; 24; 24; 24; 24; 24; 24; 24; 24.

Vậy Q1 = 24.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 25; 25; 25; 25; 25; 25; 25; 25; 25; 26; 26; 26; 26; 27; 27.

Vậy Q3 = 25.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 25 + 1,5 = 26,5

Hoặc x < Q1 − 1,5∆Q = 24 − 1,5.1 = 22,5.

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 2 và 27.

Bài 3 trang 129 SBT Toán 10 - Chân trời sáng tạo

Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021 ở bảng sau:

Số lỗi

0

1

2

3

4

5

6

7

12

15

Số ngày

2

3

4

6

6

3

2

3

1

1

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu

b) Xác định các giá trị ngoại lệ (nếu có) của mẫu số liệu

c) Hãy tìm phương sai và độ lệch chuẩn của mẫu số liệu.

Phương pháp:

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Lời giải:

a) Ta có: n = 2 + 3 + 4 + 6 + 6 + 3 + 2 + 3 + 1 + 1 = 31.

Sắp xếp mẫu số liệu theo thứ tự không giảm: 0; 0; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 5; 5; 5; 6; 6; 7; 7; 7; 12; 15.

Khi đó, khoảng biến thiên R = 15 – 0 = 15.

Vì n = 31 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 4.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Qvì n là số lẻ: 0; 0; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3.

Vậy Q1 = 2.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Qvì n là số lẻ: 4; 4; 4; 4; 4; 5; 5; 5; 6; 6; 7; 7; 7; 12; 15.

Vậy Q3 = 5.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 5 – 2 = 3.

b) Giá trị ngoại lệ x thỏa mãn

 x > Q3 + 1,5∆Q = 5 + 1,5.3 = 9,5

Hoặc x < Q1 − 1,5∆Q = 2 − 1,5.3 = −2,5

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 12 và 15.

c) Số trung bình cộng:

Bài 4 trang 130 SBT Toán 10 - Chân trời sáng tạo

Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: 0C)

a) Hãy tìm viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.

b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.

c) Hãy tìm phương sai và độ lệch chuẩn của mẫu số liệu đó.

Phương pháp:

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Lời giải:

a) Ta có:

+) Nhiệt độ đạt 23°C tại các ngày: 1 và 8

+) Nhiệt độ đạt 24°C tại các ngày: 2, 3, 7 và 9

+) Nhiệt độ đạt 25°C tại các ngày: 6 và 10

+) Nhiệt độ đạt 29°C tại ngày: 5

+) Nhiệt độ đạt 32°C tại ngày: 4

Từ đó ta có mẫu số liệu thống kê nhiệt độ từ biểu đồ trên là

23; 24; 24; 32; 29; 25; 24; 23; 24; 25

b) Sắp xếp mẫu số liệu theo thứ tự không giảm:

23; 23; 24; 24; 24; 24; 25; 25; 29; 32

Khi đó, khoảng biến thiên R = 32 – 23 = 9.

Vì n = 10 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (24 + 24) : 2 = 24.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Qvì n là số chẵn: 23; 23; 24; 24; 24.

Vậy Q1 = 24.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Qvì n là số chẵn: 24; 25; 25; 29; 32.

Vậy Q3 = 25.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.

c) Số trung bình cộng:

Bài 5 trang 130 SBT Toán 10 - Chân trời sáng tạo

Khuê và Trọng ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/9 đến ngày 15/9 năm 2020 ở bảng sau:

Khuê

2

4

3

4

6

2

3

2

4

5

3

4

6

7

3

Trọng

3

4

1

2

2

3

4

1

2

30

2

2

2

3

6

a) Hãy tìm phương sai của từng dãy số liệu.

b) Sau khi bỏ đi các giá trị ngoại lệ (nếu có), hãy so sánh số lượng tin nhắn mỗi bạn nhận được theo số trung bình và theo trung vị.

Phương pháp:

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)

Tính số trung bình và số trung vị

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Lời giải:

a) n = 15

+) Khuê:

Số trung bình cộng:

b)

+) Khuê:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 3, Q3 = 5

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 5 – 3 = 2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 5 + 1,5.2 = 8

Hoặc x < Q1 − 1,5∆Q = 3 − 1,5.2 = 0

Vậy đối chiếu mẫu số liệu của Khuê suy ra không có giá trị ngoại lệ.

+) Trọng:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 2, Q3 = 4

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 4 – 2 = 2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 4 + 1,5.2 = 7

Hoặc x < Q1 − 1,5∆Q = 2 − 1,5.2 = −1

Vậy đối chiếu mẫu số liệu của Trọng suy ra giá trị ngoại lệ là 30.

Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của Khuê là:

 

Khi đó trung vị của mẫu của Khuê là 4 (Với n = 15 là số lẻ)

Và số trung vị của Trọng là (2 + 2) : 2 = 2 (Với n = 14 là số chẵn).

Vậy so sánh theo cả số trung bình và số trung vị thì Khuê có nhiều tin nhắn mỗi ngày hơn Trọng.

Bài 6 trang 130 SBT Toán 10 - Chân trời sáng tạo

Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).

Ngày

1

2

3

4

5

6

7

8

9

10

A

45

45,1

45,3

35,5

45,6

45,5

45,4

45,5

45,4

45,2

B

47

47,5

47,8

68,4

49

48,8

48,8

48,8

48,6

49,2

a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.

b) Sau khi bỏ đi ngày có giá bất thường, hãy cho biết giá cổ phiếu nào ổn định hơn. Tại sao?

Phương pháp:

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)

Lời giải:

a) +) Mã cổ phiếu A:

Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 45,1, Q3 = 45,5

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 45,5 – 45,1 = 0,4.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 45,5 + 1,5.0,4 = 46,1

Hoặc x < Q1 − 1,5∆Q = 45,1 − 1,5.0,4 = 44,5

Vậy đối chiếu mẫu số liệu của A suy ra giá trị ngoại lệ là 35,5 và rơi vào ngày thứ 4.

+) Mã cổ phiếu B:

Áp dụng các bước tìm tứ phân vị ta dễ dàng tìm được Q1 = 47,8, Q3 = 49

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 49 – 47,8 = 1,2.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 49 + 1,5.1,2 = 50,8

Hoặc x < Q1 − 1,5∆Q = 47,8 − 1,5.1,2 = 46

Vậy đối chiếu mẫu số liệu của B suy ra giá trị ngoại lệ là 68,4 và rơi vào ngày thứ 4.

b) Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của A là:

Vậy so sánh hai phương sai mẫu ta thấy 0,036 < 0,505 nên giá của mã cổ phiếu A ổn định hơn giá của mã cổ phiếu B. 

Sachbaitap.com