Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SBT Toán 10 trang 88, 89, 90 Cánh Diều tập 2

Giải bài 47, 48, 49 trang 88, bài 50, 51, 52, 53, 54, 55, 56 trang 89, bài 57, 58 trang 90 SBT Toán 10 Cánh Diều tập 2. Viết phương trình đường tròn (C) trong mỗi trường hợp sau:

Bài 47 trang 88 SBT Toán 10 - Cánh Diều

Phương trình nào sau đây không là phương trình đường tròn?

A. x² + y² = 4                                       B. x² + y² + 2x – 1 = 0            

C. 2x2 + 3y2 + 2x + 3y = 9                   D. x² + y² + 4y + 3 = 0

Phương pháp:

Bước 1: Tìm các PT có hệ số của x2 và y2 khác nhau để tìm ra PT không là PT đường tròn

Bước 2: Nếu các PT đều có hệ số x2 và y2 bằng nhau thì biến đổi các PT còn lại về dạng \({(x - a)^2} + {(y - b)^2} = c\)

Bước 3: Xét dấu của c, nếu c ≤ 0 thì PT đó không là phương trình đường tròn

Lời giải:

Ta thấy PT 2x2 + 3y2 + 2x + 3y = 9 có hệ số của x2 và y2 khác nhau nên không là phương trình đường tròn

 Chọn C

Bài 48 trang 88 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x + 8)2 + (y – 10)2 = 36. Toạ độ tâm I của (C) là:

A. (8; -10)                   B. (-8; 10)                   C. (-10; 8)                   D. (10; -8)

Phương pháp:

Đường tròn có PT \({(x - a)^2} + {(y - b)^2} = {R^2}\) có tâm I(a ; b)

Lời giải:

Dễ dàng ta thấy theo dạng phương trình đường tròn (x-a)2+(y-b)2=R2 thì tâm I của (C) có tọa độ là I(-8; 10).

Vậy chọn đáp án B.

Bài 49 trang 88 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x − 1)2 + (y + 2)2 = 4. Bán kính của (C) bằng:

A. 4                             B. 16                           C. 2                             D. 1

Phương pháp:

Đường tròn có PT \({(x - a)^2} + {(y - b)^2} = c\) với c > 0 có bán kính \(R = \sqrt c \)

Lời giải:

Vậy chọn đáp án C.

Bài 50 trang 89 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, đường tròn tâm I(− 4 ; 2) bán kính R = 9 có phương trình là:

A. (x - 4)² + (y + 2)² = 81                               B. (x + 4)² + (y - 2)² = 9

C. (x - 4)² + (y + 2)² = 9                                  D. (x + 4)² + (y - 2)² = 81

Phương pháp:

Đường tròn (C) có tâm I(a ; b), bán kính R có PT dạng chính tắc: (C): \({(x - a)^2} + {(y - b)^2} = {R^2}\)

Lời giải:

Đường tròn tâm I(- 4; 2) bán kính R = 9 có phương trình là: (x+4)2+(y-2)2=81

Vậy chọn đáp án D.

Bài 51 trang 89 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x − 3)2 + (y − 4)= 25. Tiếp tuyến tại điểm M(0; 8)  thuộc đường tròn có một vectơ pháp tuyến là:

A. \(\overrightarrow n  = ( - 3;4)\)               B. \(\overrightarrow n  = (3;4)\)                     

C. \(\overrightarrow n  = (4; - 3)\)               D. \(\overrightarrow n  = (4;3)\)

Phương pháp:

Giả sử d là tiếp tuyến tại M của (C). Khi đó \(IM \bot d\) (I là tâm của (C)) nên d nhận vectơ \(\overrightarrow {OM} \) làm VTPT

Lời giải:

(C) có tâm I(3; 4), bán kính R = 5

Giả sử d là tiếp tuyến tại M của (C) \( \Rightarrow IM \bot d\) \( \Rightarrow \) d nhận \(\overrightarrow {IM} \) làm VTPT

\( \Rightarrow \)\(\overrightarrow {IM}  = ( - 3;4)\)   

Chọn A

Bài 52 trang 89 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x – 6)2 + (y – 7)2 = 16. Hai điểm MN chuyển động trên đường tròn (C). Khoảng cách lớn nhất giữa hai điểm M và N bằng:

A. 16                           B. 8                             C. 4                             D. 256

Phương pháp:

Khoảng cách lớn nhất giữa hai điểm trên đường tròn là đường kính của đường tròn

Lời giải:

Do M, N chuyển động trên đường tròn nên khoảng cách lớn nhất giữa 2 điểm M, N chính bằng đường kính của đường tròn.

Vậy độ dài lớn nhất của MN = 2R = 8. Chọn đáp án B.

Bài 53 trang 89 SBT Toán 10 - Cánh Diều

Tìm k sao cho phương trình: x2 + y2 – 6x + 2ky + 2k + 12 = 0 là phương trình đường tròn.

Lời giải:

PT x2 + y2 – 6x + 2ky + 2k + 12 = 0 (1) có các giá trị a = 3, b = -kc = 2k + 12

(1) là PT đường tròn khi và chỉ khi 32 + k2 – 2k – 12 > 0 \( \Leftrightarrow {k^2} - 2k - 3 > 0 \Leftrightarrow \left[ \begin{array}{l}k > 3\\k <  - 1\end{array} \right.\)

Vậy với \(k > 3\) hoặc \(k <  - 1\) thì PT (1) là phương trình đường tròn

Bài 54 trang 89 SBT Toán 10 - Cánh Diều

Viết phương trình đường tròn (C) trong mỗi trường hợp sau:

a) (C) có tâm I(−6 ; 2) bán kính 7

b) (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)

c) (C) có tâm I(1 ; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0

d) (C) có đường kính AB với A(−2 ; 3) và B(0 ; 1)

e) (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0

Lời giải:

a) (C) có tâm I(−6 ; 2) bán kính 7 nên có PT: \({(x + 6)^2} + {(y - 2)^2} = 49\)

b) (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1) \( \Rightarrow \) Bán kính của (C) là \(IA = \sqrt {{{(4 - 3)}^2} + {{(1 + 7)}^2}}  = \sqrt {65} \)

\( \Rightarrow \)(C) có PT: \({(x - 3)^2} + {(y + 7)^2} = 65\)

c) (C) có tâm I(1 ; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0

\( \Rightarrow \) Bán kính của (C) là khoảng cách từ tâm I đến đường thẳng ∆: 3x + 4y + 19 = 0

Ta có: \(d(I,\Delta ) = \frac{{\left| {3.1 + 4.2 + 19} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{30}}{5} = 6\)

\( \Rightarrow \)(C) có PT: \({(x - 1)^2} + {(y - 2)^2} = 36\)

d) (C) có đường kính AB với A(−2 ; 3) và B(0 ; 1)

\( \Rightarrow \) (C) có tâm I là trung điểm của AB \( \Rightarrow I( - 1;2)\)

(C) có bán kính IA = IB = \(\sqrt 2 \)

\( \Rightarrow \)(C) có PT: \({(x + 1)^2} + {(y - 2)^2} = 2\)

e) (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0

Do \(I \in {\Delta _1}\) nên \(I(1 + t;1 - t)\)

Theo giả thiết, \(R = d(I,{\Delta _2}) = d(I,{\Delta _3}) \Leftrightarrow \frac{{\left| {3(1 + t) + 4(1 - t) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{\left| {3(1 + t) - 4(1 - t) + 2} \right|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }}\)

                                                        \( \Leftrightarrow \left| {6 - t} \right| = \left| {7t + 1} \right| \Leftrightarrow \left[ \begin{array}{l}6 - t = 7t + 1\\6 - t =  - 7t - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = \frac{5}{8}\\t = \frac{{ - 7}}{6}\end{array} \right.\)

Với \(t = \frac{5}{8} \Rightarrow I\left( {\frac{{13}}{8};\frac{3}{8}} \right)\) \( \Rightarrow \)\(R = \frac{{43}}{{40}}\). Khi đó (C) có PT: \({\left( {x - \frac{{13}}{8}} \right)^2} + {\left( {y - \frac{3}{8}} \right)^2} = \frac{{1849}}{{1600}}\)

Với \(t =  - \frac{7}{6} \Rightarrow I\left( { - \frac{1}{6};\frac{{13}}{6}} \right)\)\( \Rightarrow \)\(R = \frac{{43}}{{30}}\). Khi đó (C) có PT: \({\left( {x + \frac{1}{6}} \right)^2} + {\left( {y - \frac{{13}}{6}} \right)^2} = \frac{{1849}}{{900}}\)

Bài 55 trang 89 SBT Toán 10 - Cánh Diều

Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x + 2)2 + (y − 3)= 4 trong mỗi trường hợp sau:

a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3

b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0

c) ∆ đi qua điểm D(0 ; 4)

Lời giải:

(C) có tâm I(-2 ; 3), bán kính R = 2

a) Theo giả thiết, điểm M(m; 3) là tiếp điểm của ∆ và (C)

Ta có: \(IM = 2 \Leftrightarrow I{M^2} = 4 \Leftrightarrow {(m + 2)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}m + 2 = 2\\m + 2 =  - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  - 4\end{array} \right.\)

Với m = 0 thì M(0 ; 3) \( \Rightarrow \)∆ đi qua M và nhận \(\overrightarrow {IM}  = (2;0)\) làm VTPT nên có PT: x = 0

Với m = -4 thì M(-4 ; 3) \( \Rightarrow \)∆ đi qua M và nhận \(\overrightarrow {IM}  = ( - 2;0)\) làm VTPT nên có PT: x + 4 = 0

b) Theo giả thiết, ∆ vuông góc với đường thẳng d: 5x – 12y + 1 = 0 mà d có VTPT \(\overrightarrow {{n_d}}  = (5; - 12)\)

\( \Rightarrow \Delta \) nhận \(\overrightarrow n  = (12;5)\) làm VTPT \( \Rightarrow \Delta \) có PTTQ: 12x + 5y + c = 0

Ta có: \(d(I,\Delta ) = R \Leftrightarrow \frac{{\left| {12.( - 2) + 5.3 + c} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)\( \Leftrightarrow \left| {c - 9} \right| = 26 \Leftrightarrow \left[ \begin{array}{l}c - 9 = 26\\c - 9 =  - 26\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 35\\c =  - 17\end{array} \right.\)

Với c = 35 thì ∆ có PT: 12x + 5y + 35 = 0

Với c = -17 thì ∆ có PT: 12x + 5y – 17 = 0

c) Giả sử ∆ có PTTQ: \(ax + by + c = 0\)

Ta có: \(D(0;4) \in \Delta  \Rightarrow 4b + c = 0 \Leftrightarrow c =  - 4b\)\( \Rightarrow \Delta :ax + by - 4b = 0\)

Ta có: \(d(I,\Delta ) = R \Leftrightarrow \frac{{\left| { - 2a + 3b - 4b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| { - 2a - b} \right| = 2\sqrt {{a^2} + {b^2}} \)

                           \( \Leftrightarrow 4{a^2} + 4ab + {b^2} = 4({a^2} + {b^2}) \Leftrightarrow 3{b^2} = 4ab \Leftrightarrow \left[ \begin{array}{l}b = 0\\3b = 4a\end{array} \right.\)

Với b = 0, chọn a = 1 \( \Rightarrow \Delta \) có PT: x = 0

Với 3b = 4a, chọn a = 3, b = 4 \( \Rightarrow \Delta \) có PT: 3x + 4y – 16 = 0

Bài 56 trang 89 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x + 2)2 + (y − 4)2 = 25 và điểm A(-1; 3).

a) Xác định vị trí tương đối của điểm A đối với đường tròn (C)

b) Đường thẳng d thay đổi đi qua A cắt đường tròn tại M và N. Viết phương trình đường thẳng d sao cho MN ngắn nhất

Lời giải:

a) (C) có tâm I(-2 ; 4) và bán kính R = 5

Ta có: \(\overrightarrow {IA}  = (1; - 1) \Rightarrow IA = \sqrt 2 \)

Có: \(IA = \sqrt 2  < R \Rightarrow \) Điểm A nằm bên trong đường tròn (C)

b) Theo giả thiết, d cắt (C) tại 2 điểm MN thỏa mãn MN ngắn nhất \( \Leftrightarrow \) khoảng cách từ tâm I đến d lớn nhất

Gọi H là hình chiếu của I trên d. Ta có: \(IH \le IA\)

\( \Rightarrow \) IH đạt GTLN khi và chỉ khi H trùng với A

\( \Rightarrow IA \bot d\) \( \Rightarrow d\) nhận \(\overrightarrow {IA}  = (1; - 1)\) làm vectơ pháp tuyến nên có PT: x – y + 4 = 0

Bài 57 trang 90 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:

1+ 1 = 0,  ∆2: 3+ 4+ 20 = 0,  ∆3: 2x - y + 50 = 0

và đường tròn (C): (x + 3)2 + (−1)2 = 9.

Xác định vị trí tương đối của các đường thẳng đã cho đối với đường tròn (C).

Lời giải:

(C) có tâm I(-3 ; 1) và bán kính R = 3

+) Xét ∆1+ 1 = 0

Ta có: \(d(I,{\Delta _1}) = \frac{{\left| { - 3 + 1 + 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} < R\) \( \Rightarrow {\Delta _1}\) cắt đường tròn (C) tại 2 điểm

+) Xét ∆2: 3+ 4+ 20 = 0

Ta có: \(d(I,{\Delta _2}) = \frac{{\left| {3.( - 3) + 4.1 + 20} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3 = R\) \( \Rightarrow {\Delta _2}\) tiếp xúc với đường tròn (C)

+ Xét ∆3: 2x - y + 50 = 0

Ta có: \(d(I,{\Delta _3}) = \frac{{\left| {2.( - 3) - 1 + 50} \right|}}{{\sqrt {{2^2} + {{( - 1)}^2}} }} = \frac{{43\sqrt 5 }}{5} > R\) \( \Rightarrow {\Delta _3}\) và đường tròn (C) không giao nhau

Bài 58 trang 90 SBT Toán 10 - Cánh Diều

Trong mặt phẳng toạ độ Oxy, cho điểm M(1 ; 1) và đường thẳng : 3x + 4y + 3 = 0. Viết phương trình đường tròn (C), biết (C) có tâm M và đường thẳng ∆ cắt (C) tại hai điểm NP thoả mãn tam giác MNP đều.

Lời giải:

Gọi H là hình chiếu của M lên đường thẳng ∆

Ta có: \(MH = d(M,\Delta ) = \frac{{\left| {3 + 4 + 3} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2\)

Theo giả thiết, ∆MNP đều \( \Rightarrow \widehat {MNH} = {60^0}\)

Xét \(\Delta MNH\) vuông tại H có \(MN = \frac{{MH}}{{\sin \widehat {MNH}}} = \frac{2}{{\sin {{60}^0}}} = \frac{{4\sqrt 3 }}{3}\)\( \Rightarrow R = \frac{{4\sqrt 3 }}{3}\)

Vậy (C) có PT: \({(x - 1)^2} + {(y - 1)^2} = \frac{{16}}{3}\)

Sachbaitap.com