Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 10 trang 215 Sách bài tập (SBT) Toán Đại số 10

Cho phương trình bậc hai

Cho phương trình bậc hai

\(a{x^2} - 2(a + 1)x + {(a + 1)^2}a = 0\) (E)

Kí hiệu S là tổng, P là tích các nghiệm (nếu có) của phương trình trên.

a) Với giá trị nào của a, phương trình (E) có nghiệm?

b) Biện luận dấu của S và P. Từ đó suy ra dấu các nghiệm của (E).

c)Tìm hệ thức giữa S và P độc lập đối với a.

d) Với những giá trị nào của a, các nghiệm \({x_1},{x_2}\) của (E) thỏa mãn hệ thức \({x_1} = 3{x_2}\)? Tìm các nghiệm \({x_1},{x_2}\) trong mỗi trường hợp đó.

Gợi ý làm bài

a) Phải có:

\(\Delta  = {(a + 1)^2} - {(a + 1)^2}{a^2} = {(a + 1)^2}(1 - {a^2}) \ge 0\)

\( \Leftrightarrow  - 1 \le a \le 1,a \ne 0\)

b) Ta có:

\(P = {(a + 1)^2}\)

\(P = 0 \Leftrightarrow a =  - 1\), khi đó \({x_1} = {x_2} = 0\)

\(P > 0,\forall a \ne  - 1\) khi đó \({x_1},{x_2}\) cùng dấu.

Mặt khác \(S = {{2(a + 1)} \over a}\)

Suy ra:

Với \(0 < a \le 1\) thì hai nghiệm của phương trình (E) đều dương;

Với \( - 1 \le a < 0\) thì hai nghiệm của phương trình (E) đều âm;

c) Từ \(S = {{2(a + 1)} \over a}\) suy ra \(a = {2 \over {S - 2}}\)

Do đó: \(P = {\left( {{2 \over {S - 2}} + 1} \right)^2} = {{{S^2}} \over {{{(S - 2)}^2}}} \Leftrightarrow {(S - 2)^2}P - {S^2} = 0\)

d) \(\left\{ \matrix{
{x_1} + {x_2} = {{2(a + 1)} \over a} \hfill \cr
{x_1} = 3{x_2} \hfill \cr} \right. = > 4{x_2} = {{2(a + 1)} \over a}\)

\(\left\{ \matrix{
{x_1}{x_2} = {(a + 1)^2} \hfill \cr
{x_1} = 3{x_2} \hfill \cr} \right. = > 3x_2^2 = {(a + 1)^2}.\)

Suy ra: 

\({(a + 1)^2}(4{a^2} - 3) = 0 \Leftrightarrow \left[ \matrix{
a = - 1 \hfill \cr
a = {{\sqrt 3 } \over 2} \hfill \cr
a = - {{\sqrt 3 } \over 2} \hfill \cr} \right.\)

Với a = - 1 ta có: \({x_1} = {x_2} = 0\)

Với \(a = {{\sqrt 3 } \over 2}\) ta có: \({x_2} = {{3 + 2\sqrt 3 } \over 6};{x_1} = {{3 + 2\sqrt 3 } \over 2}\)

Với \(a =  - {{\sqrt 3 } \over 2}\) ta có: \({x_2} = {{3 - 2\sqrt 3 } \over 6};{x_1} = {{3 - 2\sqrt 3 } \over 2}\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: BÀI TẬP ÔN TẬP CUỐI NĂM