Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 11, 12, 13, 14, 15, 16 trang 11, 12 SGK Toán 9 tập 1 - Luyện tập

Giải bài 11, 12, 13, 14, 15 trang 11, bài 16 trang 12 sách giáo khoa Toán lớp 9 tập 1 bài Luyện tập. Bài 16 Đố. Hãy tìm chỗ sai trong phép chứng minh "Con muỗi nặng bằng con voi" dưới đây.

Bài 11 trang 11 SGK Toán lớp 9 tập 1

Câu hỏi:

Tính:

Tính:

a) \(\sqrt{16}.\sqrt{25} + \sqrt{196}:\sqrt{49}\);

b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\);

c) \(\sqrt{\sqrt{81}}\);

d) \( \sqrt{3^{2}+4^{2}}\).

Lời giải: 

a) Ta có: \(\sqrt{16}.\sqrt{25} + \sqrt{196}:\sqrt{49}\)

\(=\sqrt{4^2}.\sqrt{5^2}+\sqrt{14^2}:\sqrt{7^2}\)

\(=\left| 4 \right| . \left| 5 \right| + \left| {14} \right| : \left| 7 \right|\)

\(=4.5+14:7 \)

\(=20+2=22 \). 

b) Ta có:

 \(36:\sqrt{2.3^2.18}-\sqrt{169} \)

\(= 36: \sqrt{(2.3^2).18}-\sqrt{13^2} \)

\(=36:\sqrt{(2.9).18} - \left| 13 \right| \)

\(=36:\sqrt{18.18}-13\)  

\(=36:\sqrt{18^2}-13 \)

\(=36: \left|18 \right| -13\)

\(=36:18-13 \) 

\(=2-13=-11\).

c) Ta có: \(\sqrt{81}=\sqrt{9^2}=\left| 9 \right| = 9\).

 \( \Rightarrow \sqrt{\sqrt{81}}\)\(=\sqrt{9}= \sqrt{3^2}=\left| 3 \right| =3\).

d) Ta có: \(\sqrt{3^{2}+4^{2}}=\sqrt{16+9}=\sqrt{25}\)\(=\sqrt{5^2}=\left|5 \right| =5\).

Bài 12 trang 11 SGK Toán lớp 9 tập 1

Câu hỏi:

Tìm x để mỗi căn thức sau có nghĩa:

a)\( \sqrt{2x + 7}\);                         c) \(\displaystyle \sqrt {{1 \over { - 1 + x}}} \)

b) \( \sqrt{-3x + 4}\)                      d) \( \sqrt{1 + x^{2}}\)

Lời giải: 

a) Ta có:

\(\sqrt{2x + 7}\) có nghĩa khi và chỉ khi:  \(2x + 7\geq 0 \)

\( \Leftrightarrow 2x \geq -7\)

\(\displaystyle \Leftrightarrow x \geq {{ - 7} \over 2}\).

b) Ta có

\(\sqrt{-3x + 4}\) có nghĩa khi và chỉ khi:  \(-3x + 4\geq 0\)

 \(\Leftrightarrow -3x\geq -4\)

\(\displaystyle \Leftrightarrow x\leq {-4 \over {- 3}}\)

\(\displaystyle \Leftrightarrow x\leq {4 \over { 3}}\)

 c) Ta có:

\(\sqrt{\dfrac{1}{-1 + x}}\) có nghĩa khi và chỉ khi: 

\(\displaystyle {1 \over \displaystyle { - 1 + x}} \ge 0 \Leftrightarrow - 1 + x > 0\)

\(  \Leftrightarrow x > 1\)

d) \(\sqrt{1 + x^{2}}\)

Ta có:    \(x^2\geq 0\),  với mọi số thực \(x\)

\(\Leftrightarrow x^2+1 \geq 0+ 1\), (Cộng cả 2 vế của bất đẳng thức trên với \(1\))

\(\Leftrightarrow x^2+1 \geq 1\), mà \(1 >0\)

\(\Leftrightarrow x^2+1 >0\)

Vậy căn thức trên luôn có nghĩa với mọi số thực \(x\).

Bài 13 trang 11 SGK Toán lớp 9 tập 1

Câu hỏi:

Rút gọn các biểu thức sau:

a) \(2\sqrt {{a^2}}  - 5a\) với \(a < 0\).              

b) \( \sqrt{25a^{2}}+ 3a\) với \(a ≥ 0\).

c) \(\sqrt {9{a^4}}  + 3{a^2}\),                          

d) \( 5\sqrt{4a^{6}}\) - \( 3a^{3}\) với \(a < 0\)

Phương pháp:

+) Sử dụng hằng đẳng thức \(\sqrt{A^2}=\left| A \right|\).

+) Sử dụng định nghĩa giá trị tuyệt đối của số \(a\): Nếu \(a \ge 0\) thì \( \left| a \right| =a\). Nếu \( a< 0\) thì \( \left| a \right| = -a\). 

Lời giải: 

a) Ta có: \(2\sqrt{a^2}-5a=2|a|-5a\)

\(=2.(-a)-5a\) (vì \(a<0\) nên \( \left| a \right| =-a \))

\(=-2a-5a\)

\(=(-2-5)a\)

\(=-7a\)

Vậy \(2 \sqrt{a^2}-5a=-7a\).

b) Ta có:  \(\sqrt{25a^{2}} + 3a= \sqrt{5^2.a^2}+3a\)

\(=\sqrt{(5a)^2}+3a\)

\(=\left| 5 a\right| +3a\) 

\(=5a+3a\)

\(=(5+3)a\)

\(=8a\).

(vì \(a\geq 0\Rightarrow |5a|=5a\) ) 

c) Ta có: \(\sqrt{9a^{4}}+3a^2= \sqrt{3^2.(a^2)^2}+ 3a^2\)

\(=\sqrt{(3a^2)^2}+3a^2\)

\(=\left| 3 a^2\right| +3a^2\)

\(=3a^2 + 3a^2\)

\(=(3+3)a^2\)

\(=6a^2\).

(Vì \(a^2\geq 0\) với mọi \( a\,\,\in\,\,\mathbb{R}\Rightarrow |3a^2|=3a^2\)).

d) Ta có: 

\(5\sqrt{4a^{6}} - 3a^3=5\sqrt{2^2.(a^3)^2} -3a^3\)

\(=5.\sqrt{(2a^3)^2}-3a^3\)

\(=5.\left| 2a^3 \right| -3a^3\)

\(=5.2.(-a^3)-3a^3\)  (vì \(a<0\) nên \(|2a^3|=-2a^3\) )

\(=10.(-a^3) - 3a^3\)

\(=-10a^3-3a^3\)

\(=(-10-3)a^3\)

\(=-13a^3\).

Bài 14 trang 11 SGK Toán lớp 9 tập 1

Câu hỏi:

 Phân tích thành nhân tử:

a) \( x^{2}- 3\).                         b) \( x^{2}- 6\);

c) \( x^{2}\) + \( 2\sqrt{3}x + 3\);            d) \( x^{2}\) - \( 2\sqrt{5}x + 5\).

Phương pháp:

+) Với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\)

+) Sử dụng các hằng đẳng thức:

     1) \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

     2) \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

     3) \({a^2} - {b^2} = \left( {a - b} \right).\left( {a + b} \right)\)

Lời giải: 

a) Ta có: 

\(x^{2} - 3=x^2-(\sqrt{3})^2\)

            \(=(x-\sqrt{3})(x+\sqrt{3})\)  (Áp dụng hằng đẳng thức số 3)

b) Ta có: 

\(x^{2}- 6=x^2-(\sqrt{6})^2\)

             \(=(x-\sqrt{6})(x+\sqrt{6})\)  (Áp dụng hằng đẳng thức số 3)

c) Ta có: 

\(x^2+2\sqrt{3}x + 3=x^2+2.x.\sqrt{3}+(\sqrt{3})^2\)

                           \(=(x+\sqrt{3})^2\) (Áp dụng hằng đẳng thức số 1)

d) Ta có:

\(x^2-2\sqrt{5}x+5=x^2-2.x.\sqrt{5}+(\sqrt{5})^2\)

                            \(=(x-\sqrt{5})^2\)  (Áp dụng hằng đẳng thức số 2).

Bài 15 trang 11 SGK Toán lớp 9 tập 1

Câu hỏi:

Giải các phương trình sau:

a) \({x^2} - 5 = 0\);              b) \({x^2} - 2\sqrt {11} x + 11 = 0\)

Phương pháp:

+) Với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\).

+) Nếu \(a.b=0\) thì \(a=0\) hoặc \(b=0\).

+) Sử dụng các hằng đẳng thức:

     \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

     \({a^2} - {b^2} = \left( {a - b} \right).\left( {a + b} \right)\)

Lời giải: 

a) Ta có:

\({x^2} - 5 = 0 \Leftrightarrow {x^2} = 5 \Leftrightarrow x =  \pm \sqrt 5 \)

Vậy \( S = \left\{ { - \sqrt 5 ;\sqrt 5 } \right\} \).

Cách khác: 

Ta có: \({x^2} - 5 = 0\)

         \(\Leftrightarrow {x^2} - {\left( {\sqrt 5 } \right)^2} = 0\) 

         \(\Leftrightarrow \left( {x + \sqrt 5 } \right).\left( {x - \sqrt 5 } \right) = 0\)

        \( \Leftrightarrow \left[ \matrix{
x + \sqrt 5 = 0 \hfill \cr
x - \sqrt 5 = 0 \hfill \cr} \right.\)

        \( \Leftrightarrow \left[ \matrix{
x = - \sqrt 5 \hfill \cr
x = \sqrt 5 \hfill \cr} \right.\) 

b) Ta có:

\({x^2} - 2\sqrt {11} x + 11 = 0  \)
\( \Leftrightarrow {x^2} - 2.x.\sqrt {11} + {\left( {\sqrt {11} } \right)^2} = 0 \)
\( \Leftrightarrow {\left( {x - \sqrt {11} } \right)^2} = 0  \)
\(\Leftrightarrow x - \sqrt {11} =0\)

\(\Leftrightarrow x = \sqrt {11} \)

Vậy \(S = \left\{ {\sqrt {11} } \right\} \)

Bài 16 trang 12 SGK Toán lớp 9 tập 1

Câu hỏi:

Đố. Hãy tìm chỗ sai trong phép chứng minh "Con muỗi nặng bằng con voi" dưới đây. 

Giả sử con muỗi nặng \(m\) (gam), còn con voi nặng \(V\) (gam). Ta có

                      \({m^2} + {V^2} = {V^2} + {m^2}\)

Cộng hai về với \(-2mV\), ta có

                      \({m^2} - 2mV + {V^2} = {V^2} - 2mV + {m^2},\)

hay                 \({\left( {m - V} \right)^2} = {\left( {V - m} \right)^2}\)

Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:

                       \(\sqrt {{{\left( {m - V} \right)}^2}}  = \sqrt {{{\left( {V - m} \right)}^2}} \)          (1)

Do đó                \(m - V = V - m\)                          (2)

Từ đó ta có \(2m = 2V\), suy ra \(m = V\). Vậy con muỗi nặng bằng con voi (!).

Lời giải: 

Áp dụng hằng đẳng thức \( \sqrt{A^2}=\left| A \right|\) thì ta phải có: 

\(\left\{ \matrix{
\sqrt {{{\left( {m - V} \right)}^2}} = \left| {m - V} \right| \hfill \cr
\sqrt {{{\left( {V - m} \right)}^2}} = \left| {V - m} \right| \hfill \cr} \right.\)

Do đó:  \(\sqrt {{{\left( {m - V} \right)}^2}}  = \sqrt {{{\left( {V - m} \right)}^2}} \)

        \(\Leftrightarrow \left| m-V\right|=\left|V-m\right|.\)

Vậy bài toán trên sai từ dòng (1) xuống dòng (2) vì khai căn không có dấu giá trị tuyệt đối.

Do đó, con muỗi không thể nặng bằng con voi.

Sachbaitap.com