Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.18 trang 16 Sách bài tập (SBT) Giải tích 12

Chứng minh rằng hàm số sau không có đạo hàm tại x = 0 nhưng đạt cực đại tại điểm đó.

Chứng minh rằng hàm số: 

\(f(x) = \left\{ \matrix{
- 2x,\forall x \ge 0 \hfill \cr
\sin {x \over 2},\forall x < 0 \hfill \cr} \right.\)                                    

Không có đạo hàm tại x = 0 nhưng đạt cực đại tại điểm đó.

Hướng dẫn làm bài:

Hàm số:

\(f(x) = \left\{ \matrix{
- 2x,\forall x \ge 0 \hfill \cr 
\sin {x \over 2},\forall x < 0 \hfill \cr} \right.\)         

Không có đạo hàm tại x = 0 vì:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} {{f(x) - f(0)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{ - 2x} \over x} = - 2 \cr
& \mathop {\lim }\limits_{x \to {0^ + }} {{f(x) - f(0)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{ - 2x} \over x} = - 2 \cr} \)            

Mặt khác, với  x < 0  thì \(y' = {1 \over 2}\cos {x \over 2}\) , với x > 0 thì y’ = -2 < 0

Bảng biến thiên:

 

Từ đó ta thấy hàm số đạt cực đại tại x = 0 và y = y(0) = 0.

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.