Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.19 trang 16 Sách bài tập (SBT) Giải tích 12

Xác định giá trị m để hàm số sau không có cực trị.

Xác định giá trị m để hàm số sau không có cực trị.

\(y = {{{x^2} + 2mx - 3} \over {x - m}}\) 

Hướng dẫn làm bài:

Hàm số không có cực trị khi đạo hàm của nó không đổi dấu trên tập xác định R\{m}.

Ta có: 

\(\eqalign{
& y = {{{x^2} + 2mx - 3} \over {x - m}} \cr
& y' = {{(2x + 2m)(x - m) - ({x^2} + 2mx - 3)} \over {{{(x - m)}^2}}} \cr
& = {{2{x^2} - 2{m^2} - {x^2} - 2mx + 3} \over {{{(x - m)}^2}}} = {{{x^2} - 2mx - 2{m^2} + 3} \over {{{(x - m)}^2}}} \cr} \)             

Xét  g(x) = x2 – 2mx – 2m2 + 3

        ∆’g = m2 + 2m2 – 3 = 3(m2 – 1) ;

     ∆’g ≤ 0  khi – 1 ≤ m ≤ 1.

Khi – 1 ≤ m ≤ 1 thì phương trình g(x) = 0 vô nghiệm hay y’ = 0 vô nghiệm và y’  > 0 trên tập xác định. Khi đó, hàm số không có cực trị.

Khi m = 1 hoặc m = -1, hàm số đã cho trở thành y = x  + 3 (với x ≠ 1) hoặc y = x – 3 (với x ≠ - 1) Các hàm số này không có cực trị.

Vậy hàm số đã cho không có cực trị khi – 1 ≤ m ≤ 1.

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.