Bài 1.2 trang 12 Sách bài tập (SBT) Hình học 11Viết phương trình của đường thẳng d’ là ảnh của d Trong mặt phẳng \(\overrightarrow v = \left( { - 2;1} \right)\) cho, đường thẳng d có phương trình \(2x - 3y + 3 = 0\) , đường thẳng d1 có phương trình \(2x - 3y - 5 = 0\). a) Viết phương trình của đường thẳng d’ là ảnh của d qua \({T_{\overrightarrow v }}\). b) Tìm tọa độ của \(\overrightarrow w \) có giá vuông góc với đường thẳng d để d1 là ảnh của d qua \({T_{\overrightarrow w }}\). Giải: a) Lấy một điểm thuộc d ,chẳng hạn \(M = \left( {0;1} \right)\). Khi đó \(M' = {T_{\overrightarrow v }}\left( M \right) = \left( {0 - 2;1 + 1} \right) = \left( { - 2;2} \right)\) thuộc d'. Vì d' song song với d nên phương trình của nó có dạng \(2x - 3y + C = 0\). Do \(M' \in d'\) nên \(2.\left( { - 2} \right) - 3.2 + C = 0\) . Từ đó suy ra C = 10 . Do đó d' có phương trình \(2x - 3y + 10 = 0\) . b) Lấy một điểm thuộc d ,chẳng hạn \(M = \left( {0;1} \right)\). Đường thẳng \({d_2}\) qua M vuông góc với có vectơ chỉ phương là \(\overrightarrow v = \left( {2; - 3} \right)\). Do đó phương trình của \({d_2}\) là \({{x - 0} \over 2} = {{y - 1} \over { - 3}}\). Gọi M' là giao của \({d_1}\) với \({d_2}\) thì tọa độ của nó phải thỏa mãn hệ phương trình: \(\left\{ \matrix{ Từ đó suy ra \(\overrightarrow w = \overrightarrow {MM'} = \left( {{{16} \over {13}}; - {{24} \over {13}}} \right)\).
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
|
Trong mặt phẳng Oxy cho đường thẳng d có phương trình...
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình